-
摘要:
针对在轨卫星呈现海量化、网络化、智能化发展的趋势,重点探讨了软件定义卫星技术的产生背景、概念、内容与挑战。通过历史回顾,归纳卫星系统研制的3个阶段,指出目前卫星系统正在从平台、载荷优先向算法优先演进,这一趋势推动了软件定义卫星技术的产生与发展;阐述软件定义卫星技术的概念与边界,指出研究软件定义卫星技术的目的不是研制一类新型卫星,而是利用软件定义技术实现硬件资源虚拟化、系统软件平台化、应用软件多样化,提升卫星系统的网络化与智能化;分析软件定义卫星技术的主要内容与挑战,并对未来的发展进行展望。
Abstract:Focusing on the trend of massive, networked, and intelligent development of in-orbit satellites, this paper explores the background, concept, and trends of software-defined satellite technology as well as the challenges it is faced today. First, it is presented that the satellite system is evolving from platform and load-first to algorithm-first, which promotes the emergence and development of software-defined satellite technology. Then, the concept and boundary of software-defined satellite technology are proposed, with the belief that the purpose of software-defined satellite technology is not to develop a new type of satellite, but to realize the hardware resource virtualization, system software platformization and application software diversification for various intelligent satellites. Next, the main contents of software-based satellite technology are analyzed along with the challenges to this technology. Finally, the prospect for this technology is given.
-
表 1 东方红DFH卫星平台
Table 1. DFH satellite platform
平台 发射质量/kg 载荷质量/kg 载荷功率/ kW 寿命/a 首飞卫星与时间 DFH-3 2320 230 8 东方红3号通信卫星,1994-11-30 DFH-3A 2740 360 2.5 12 中星22号,2000-01-26 DFH-3B 3800 400~450 3~4 12~15 老挝1号,2015-11-21 DFH-4 5000~5300 450~700 4~8 12~15 鑫诺2号,2006-10-29 DFH-4e 550~6000 800~1000 ≥10 15 亚太6D,2020-07-09 DFH-5 6500~9000 1200~ 2200 4~22 12~15 实践20号,2020-01-05 表 2 典型载荷优先的卫星示例
Table 2. Classical payload-first satellites
序号 卫星 主要载荷 发射时间 1 哈勃空间望远镜 口径2.4 m、长度16 m的主反射镜 1990-04-24 2 詹姆斯韦伯太空望远镜 载荷质量6.2 t、口径6.5 m的主反射镜 2021-12-25 3 NROL-44 电子侦察载荷
直径超100 m、展开面积超数千平方米的巨型天线2020-12-11 4 AEHF-6 军事通信载荷
调频无线电、相控阵天线、核加固等2020-03-26 5 悟空号 粒子探测载荷
塑闪阵列探测器、硅阵列探测器、BGO量能器、中子探测器2015-12-17 -
[1] 齐心, 周思卓, 林屹立. 美军小卫星“三化”前沿技术发展探析[J]. 国际太空, 2021(3): 54-59. doi: 10.3969/j.issn.1009-2366.2021.03.012QI X, ZHOU S Z, LIN Y L. An analysis of the frontier technology development of the US army’s small satellites[J]. Space International, 2021(3): 54-59(in Chinese). doi: 10.3969/j.issn.1009-2366.2021.03.012 [2] UCS. UCS satellite database[EB/OL]. [2021-09-01]. https://www.ucsusa.org/resources/satellite-database. [3] 王迪, 骆盛, 毛锦, 等. Starlink卫星系统技术概要[J]. 航天电子对抗, 2020, 36(5): 51-56. doi: 10.3969/j.issn.1673-2421.2020.05.012WANG D, LUO S, MAO J, et al. Overview of Starlink satellite system technology[J]. Aerospace Electronic Warfare, 2020, 36(5): 51-56(in Chinese). doi: 10.3969/j.issn.1673-2421.2020.05.012 [4] 郭丽红, 蔡润斌, 李臻. 2020年美国太空军事力量发展综述[J]. 国际太空, 2021(5): 43-47. doi: 10.3969/j.issn.1009-2366.2021.05.009GUO L H, CAI R B, LI Z. Overview of U. S. space military force development in 2020[J]. Space International, 2021(5): 43-47(in Chinese). doi: 10.3969/j.issn.1009-2366.2021.05.009 [5] 司耀锋, 吴林, 郝媛媛, 等. 美军作战快速响应太空计划发展综述[J]. 国际太空, 2012(1): 33-41.SI Y F, WU L, HAO Y Y, et al. Overview of the development of the U. S. military’s operational rapid response space program[J]. Space International, 2012(1): 33-41(in Chinese). [6] SpaceX. Starlink[EB/OL]. [2021-09-01]. https://www.starlink.com. [7] 惠仲阳. 范唯唯. 日本发布新版《宇宙基本计划》[J]. 空间科学学报, 2020, 40(6): 968.HUI Z Y, FANG W W. Japan releases new version of “Universal Basic Plan”[J]. Chinese Journal of Space Science, 2020, 40(6): 968(in Chinese). [8] 闵士权. 我国天基综合信息网构想[J]. 航天器工程, 2013, 22(5): 1-14.MIN S Q. An idea of China’s space-based integrated information network[J] Spacecraft Engineering, 2013, 22(5): 1-14 (in Chinese). [9] 赵军锁, 吴凤鸽, 刘光明. 软件定义卫星技术发展与展望[J]. 卫星与网络, 2017(12): 46-50. doi: 10.3969/j.issn.1672-965X.2017.12.010ZHAO J S, WU F G, LIU G M. Development and prospect of software defined satellite technology[J]. Satellite & Network, 2017(12): 46-50(in Chinese). doi: 10.3969/j.issn.1672-965X.2017.12.010 [10] 周渊, 张洵颖, 智永锋, 等. 软件定义卫星有效载荷技术研究[J]. 西北工业大学学报, 2020, 38(S1): 96-101.ZHOU Y, ZHANG X Y, ZHI Y F, et al. Research on software defined satellite payload technology[J]. Journal of Northwestern Polytechnical University, 2020, 38(S1): 96-101(in Chinese). [11] 吴启星. 软件定义卫星研究现状与技术发展展望[J]. 中国电子科学研究院学报, 2021, 16(4): 333-337. doi: 10.3969/j.issn.1673-5692.2021.04.005WU Q X. State of the art and development analysis of software defined satellites[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(4): 333-337(in Chinese). doi: 10.3969/j.issn.1673-5692.2021.04.005 [12] 梅宏. 万物皆可互联, 一切均可编程[J]. 方圆, 2018(12): 58-59. doi: 10.3969/j.issn.1674-5396.2018.12.028MEI H. Everything can be connected, everything can be programmable[J]. Fangyuan Magazine, 2018(12): 58-59(in Chinese). doi: 10.3969/j.issn.1674-5396.2018.12.028 [13] 梅宏. 软件定义一切: 机遇和挑战 [EB/OL]. [2021-09-01]. https://www.fx361.com/page/2018/0112/2687238.shtml.MEI H. Software defines everything: Opportunities and challenges [EB/OL]. [2021-09-01]. https://www.fx361.com/page/2018/0112/2687238.shtml(in Chinese). [14] 刘帅军, 徐帆江, 刘立祥, 等. Starlink第二代系统介绍[J]. 卫星与网络, 2020(12): 62-65.LIU S J, XU F J, LIU L X, et al. Starlink second generation system introduction[J]. Satellite & Network, 2020(12): 62-65(in Chinese). [15] 雷江利, 牟金岗, 赵广秀, 等. 新一代载人飞船试验船回收着陆系统任务特点分析[J]. 国际太空, 2020(9): 8-12. doi: 10.3969/j.issn.1009-2366.2020.09.003LEI J L, MOU J G, ZHAO G X, et al. Analysis of mission characteristics of the new generation manned spacecraft test ship recovery and landing system[J]. Space International, 2020(9): 8-12(in Chinese). doi: 10.3969/j.issn.1009-2366.2020.09.003 [16] 王芳, 程洪玮, 彭博. “猎鹰9”运载火箭海上平台成功回收的分析及启示[J]. 装备学院学报, 2016, 27(6): 69-74. doi: 10.3783/j.issn.2095-3828.2016.06.014WANG F, CHENG H W, PENG B. Analysis and enlightenment of successful recovery of “Falcon 9” carrier rocket on offshore platform[J]. Journal of Equipment Academy, 2016, 27(6): 69-74(in Chinese). doi: 10.3783/j.issn.2095-3828.2016.06.014 [17] Eutelsat. Quantum [EB/OL]. [2021-09-01]. https://www.eutelsat.com. [18] 杨小牛. “软件星”概念研究[J]. 电子对抗, 2002(1): 1-5.YANG X N. Research on the concept of software satellite[J]. Electronic Warfare, 2002(1): 1-5(in Chinese). [19] 杨小牛. 基于“软件星”的综合一体化空间信息系统[J]. 中国电子科学研究院学报, 2004(4): 15-22. doi: 10.3969/j.issn.1673-5692.2004.04.004YANG X N. Comprehensive integrated spatial information system based on software satellite[J]. Journal of China Academy of Electronics and Information Technology, 2004(4): 15-22(in Chinese). doi: 10.3969/j.issn.1673-5692.2004.04.004 [20] 杜莹. 软件定义卫星技术开启卫星智能新纪元[J]. 科技纵览, 2019(8): 59-61.DU Y. Software-defined satellite technology opens a new era of satellite intelligence[J]. IEEE Spectrum, 2019(8): 59-61(in Chinese). [21] 徐福祥. 卫星工程概论[M]. 北京: 宇航出版社, 2003.XU F X. Introduction to satellite engineering[M]. Beijing: China Astronautic Publishing House, 2003(in Chinese). [22] Lockheed Martin. SmartSat[EB/OL]. [2021-09-01]. https://www.lockheedmartin.com/en-us/products/satellite.html. [23] Boeing. BOEING 702X satellites[EB/OL]. [2021-09-01]. http://www.boeing.com/space/boeing-satellite-family/702X/index.page. [24] 中国空间技术研究院. 卫星平台[EB/OL]. [2021-09-01]. https://www.cast.cn/channel/1539.Chinese Academy of Space Technology. Satellite platform[EB/OL]. [2021-09-01]. https://www.cast.cn/channel/1539(in Chinese). [25] 韩天龙, 杜刚, 陆宏伟, 等. 国外通信卫星公用平台发展趋势及启示[J]. 航天工业管理, 2015(3): 35-38. doi: 10.3969/j.issn.1004-7980.2015.03.009HAN T L, DU G, LU H W, el al. Development trend and enlightenment of foreign communication satellite public platform[J]. Aerospace Industry Management, 2015(3): 35-38(in Chinese). doi: 10.3969/j.issn.1004-7980.2015.03.009 [26] GARDNERJ P, MATHER J C, CLAMPIN M, et al. The James Webb space telescope[J]. Space Science Reviews, 2006, 123(4): 485-606. doi: 10.1007/s11214-006-8315-7 [27] SCIVILLE N, ABRAHAM R G, AUSSEL H, et al. COSMOS: Hubble space telescope observations[J]. The Astrophysical Journal Supplement Series, 2007, 172(1): 38. doi: 10.1086/516580 [28] Aerospace. NROL-44 launch: Delivering on mission success [EB/OL]. [2021-09-01]. https://aerospace.org/article/nrol-44-launch-delivering-mission-success. [29] 常进, 范一中. 悟空号: 暗物质粒子的探索者[J]. 科学, 2018, 70(3): 18-20.CHANG J, FAN Y Z. Dark matter particle explorer (DAMPE)[J]. Science, 2018, 70(3): 18-20(in Chinese). [30] 李德仁, 王密, 沈欣, 等. 从对地观测卫星到对地观测脑[J]. 武汉大学学报 (信息科学版), 2017, 42(2): 143-149.LI D R, WANG M, SHEN X, et al. From earth observation satellite to earth observation brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 143-149(in Chinese). [31] 邓宝松, 孟志鹏, 义余江, 等. 对地观测卫星任务规划研究[J]. 计算机测量与控制, 2019, 27(11): 130-139. doi: 10.16526/j.cnki.11-4762/tp.2019.11.029DENG B S, MENG Z P, YI Y J, el al. Research of task scheduling of earth observing satellites[J]. Computer Measurement & Control, 2019, 27(11): 130-139(in Chinese). doi: 10.16526/j.cnki.11-4762/tp.2019.11.029 [32] 李莉. 软件定义卫星, 智能引领航天[J]. 中国科技奖励, 2019(1): 26-28. doi: 10.3969/j.issn.1672-903X.2019.01.008LI L. Software-defined satellites, intelligence leads aerospace[J]. China Awards for Science and Technology, 2019(1): 26-28(in Chinese). doi: 10.3969/j.issn.1672-903X.2019.01.008 [33] 赵军锁, 吴凤鸽, 刘光明, 等. 发展软件定义卫星的总体思路与技术实践[J]. 卫星与网络, 2018(4): 44-49. doi: 10.3969/j.issn.1672-965X.2018.04.011ZHAO J S, WU F G, LIU G M, et al. General ideas and technical practices for the development of software-defined satellites[J]. Satellite & Network, 2018(4): 44-49(in Chinese). doi: 10.3969/j.issn.1672-965X.2018.04.011 [34] MITOLA J I. Software radio: Survey, critical evaluation and future direction[C]//Telesystems Conference. [S.I.]:[s.n.], 1992. [35] LANTZ B, HELLER B, MCKEOWN N. A network in a laptop: Rapid prototyping for software-defined networks[C]//Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks. New York: ACM, 2010: 1-6. [36] NUNES B A A, MENDONCA M, NGUYEN X N, et al. A survey of software-defined networking: Past, present, and future of programmable networks[J]. IEEE Communications surveys & tutorials, 2014, 16(3): 1617-1634. [37] HOSKEN M. VWware Software-defined storage: A design guide to the policy-driven, software-defined storage era[M]. New York: John Wiley & Sons, 2016. [38] 孟天闯, 李佳幸, 黄晋, 等. 软件定义汽车技术体系的研究[J]. 汽车工程, 2021, 43(4): 459-468. doi: 10.19562/j.chinasae.qcgc.2021.04.002MENG T C, LI J X, HUANG J, et al. Study on technical system of software defined vehicles[J]. Automotive Engineering, 2021, 43(4): 459-468(in Chinese). doi: 10.19562/j.chinasae.qcgc.2021.04.002 [39] 袁博. 新能源汽车技术发展与趋势综述[J]. 现代商贸工业, 2018, 39(35): 12-16. doi: 10.19311/j.cnki.1672-3198.2018.35.005YUAN B. Overview of new energy vehicle technology development and trends[J]. Modern Business Trade Industry, 2018, 39(35): 12-16(in Chinese). doi: 10.19311/j.cnki.1672-3198.2018.35.005 [40] 李越, 马珉. 自主可控的“软件定义”时代——访中国工程院院士倪光南[J]. 高科技与产业化, 2017(12): 33-36.LI Y, MA M. Autonomous and controllable “software-defined” era—Interview with Ni Guangnan, academician of the Chinese Academy of Engineering[J]. High-Technology & Commercialization, 2017(12): 33-36(in Chinese). [41] 李培根. 闲话“软件定义制造”[EB/OL]. [2021-09-01]. https://mp.weixin.qq.com/s/pbdRkGAQIXDijvq5U9NR4g.LI P G. Talking about “software-defined manufacturing” [EB/OL]. [2021-09-01]. https://mp.weixin.qq.com/s/pbdRkGAQIXDijvq5U9-NR4g(in Chinese). [42] 胡晓峰. 系统集成与系统综合集成[J]. 测控技术, 1999, 18(9): 11-13. doi: 10.3969/j.issn.1000-8829.1999.09.004HU X F. System integration and system meta synthesis[J]. Measurement & Control Technology, 1999, 18(9): 11-13(in Chinese). doi: 10.3969/j.issn.1000-8829.1999.09.004 [43] Lockheed Martin. New tactical ISR satellites provide global, persistent support for warfighters[EB/OL]. [2021-09-01]. https://news.lockheedmartin.com/tactical-isr-satellites. [44] HU G, LI X, ZHANG G. Research on space mosaic reconfigurable system based on MAS[C]//2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Piscataway: IEEE Press, 2021, 4: 1977-1981. [45] PETRICK D, ESPINOSA D, RIPLEY R, et al. Adapting the reconfigurable spacecube processing system for multiple mission applications[C]//2014 IEEE Aerospace Conference. Piscataway: IEEE Press, 2014: 1-20. [46] Sebastian Moss. HPE’s spaceborne computer survives a year on the International Space Station[EB/OL]. [2021-09-01]. https://www.datacenterdynamics.com/en/analysis/hpes-spaceborne-computer-survives-year-iss/. [47] 舒娜, 刘波, 林伟伟, 等. 分布式机器学习平台与算法综述[J]. 计算机科学, 2019, 46(3): 9-18. doi: 10.11896/j.issn.1002-137X.2019.03.002SHU N, LIU B, LIN W W, et al. Survey of distributed machine learning platforms and algorithms[J]. Computer Science, 2019, 46(3): 9-18(in Chinese). doi: 10.11896/j.issn.1002-137X.2019.03.002 [48] 顾炯炯. 云计算架构技术与实践[M]. 北京: 清华大学出版社, 2014.GU J J. Cloud computing architecture technology and practice[M]. Beijing: Tsinghua University Press, 2014(in Chinese). [49] 李德仁. 数字孪生城市:智慧城市建设的新高度[J]. 中国勘察设计, 2020(10): 13-14. doi: 10.3969/j.issn.1006-9607.2020.10.006LI D R. Digital twin city: New height of smart city construction[J]. China Engineering Consulting, 2020(10): 13-14(in Chinese). doi: 10.3969/j.issn.1006-9607.2020.10.006 [50] 赵秋艳, 胡朝斌, 陈川, 等. 低轨大规模星座的机遇与挑战[J]. 空间碎片研究, 2020, 20(1): 1-9.ZHAO Q Y, HU C B, CHEN C, et al. Opportunities and challenges of large-scale LEO constellation[J]. Space Debris Research, 2020, 20(1): 1-9(in Chinese). [51] 王翔, 申志伟, 朱肖曼, 等. 卫星互联网组网技术研究[J]. 信息通信技术, 2021, 15(2): 36-43. doi: 10.3969/j.issn.1674-1285.2021.02.006WANG X, SHEN Z W, ZHU X M, et al. Research on networking technology of satellite internet[J]. Information and Communications Technologies, 2021, 15(2): 36-43(in Chinese). doi: 10.3969/j.issn.1674-1285.2021.02.006 [52] 唐杰. 浅谈人工智能的下一个十年[J]. 智能系统学报, 2020, 15(1): 187-192. doi: 10.11992/tis.202005035TANG J. On the next decade of artificial intelligence[J]. CAAI Transactions on Intelligent Systems, 2020, 15(1): 187-192(in Chinese). doi: 10.11992/tis.202005035 [53] 向尚, 陈盈果, 李国梁, 等. 卫星自主与协同任务调度规划综述[J]. 自动化学报, 2019, 45(2): 252-264. doi: 10.16383/j.aas.c180068XIANG S, CHEN Y G, LI G L, et al. Review on satellite autonomous and collaborative task scheduling planning[J]. Acta Automatica Sinica, 2019, 45(2): 252-264(in Chinese). doi: 10.16383/j.aas.c180068 [54] 刘扬阳, 吕群波, 谭政, 等. 基于软件定义微纳卫星的多模式计算光学成像技术[J]. 北京航空航天大学学报, 2018, 44(12): 2463-2469. doi: 10.13700/j.bh.1001-5965.2018.0376LIU Y Y, LYU Q B, TAN Z, et al. Multi-mode computational optical imaging technology based on software-defined micro-nano satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2463-2469(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0376 [55] 王密, 杨芳. 智能遥感卫星与遥感影像实时服务[J]. 测绘学报, 2019, 48(12): 1586-1594.WANG M, YANG F. Intelligent remote sensing and remote sensing image real-time service[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1586-1594(in Chinese). [56] 许轲, 吴凤鸽, 赵军锁. 基于深度强化学习的软件定义卫星姿态控制算法[J]. 北京航空航天大学学报, 2018, 44(12): 2651-2659. doi: 10.13700/j.bh.1001-5965.2018.0357XU K, WU F G, ZHAO J S. Software defined satellite attitude control algorithm based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2651-2659(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0357 [57] 石乾乾, 张艳, 赵鹏, 等. 一种高效利用天基激光能量清除空间碎片的方法[J]. 北京航空航天大学学报, 2018, 44(12): 2621-2627. doi: 10.13700/j.bh.1001-5965.2018.0241SHI Q Q, ZHANG Y, ZHAO P, et al. A method of efficiently using space-based laser energy to remove space debris[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2621-2627(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0241 [58] 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2): 242-256. doi: 10.3724/SP.J.1218.2012.00242LIANG B, DU X D, LI C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 242-256(in Chinese). doi: 10.3724/SP.J.1218.2012.00242 [59] 杜永浩, 王凌, 邢立宁. 空天无人系统智能规划技术综述[J]. 系统工程学报, 2020, 35(3): 416-432. doi: 10.13383/j.cnki.jse.2020.03.011DU Y H, WANG L, XING L N. Intelligent planning technologies for unmanned aerospace system: A literature review[J]. Journal of Systems Engineering, 2020, 35(3): 416-432(in Chinese). doi: 10.13383/j.cnki.jse.2020.03.011