留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AE-BN的发电机滚动轴承故障诊断

王进花 高媛 曹洁 马佳林

王进花,高媛,曹洁,等. 基于AE-BN的发电机滚动轴承故障诊断[J]. 北京航空航天大学学报,2023,49(8):1896-1903 doi: 10.13700/j.bh.1001-5965.2021.0581
引用本文: 王进花,高媛,曹洁,等. 基于AE-BN的发电机滚动轴承故障诊断[J]. 北京航空航天大学学报,2023,49(8):1896-1903 doi: 10.13700/j.bh.1001-5965.2021.0581
WANG J H,GAO Y,CAO J,et al. Fault diagnosis of generator rolling bearing based on AE-BN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1896-1903 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0581
Citation: WANG J H,GAO Y,CAO J,et al. Fault diagnosis of generator rolling bearing based on AE-BN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1896-1903 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0581

基于AE-BN的发电机滚动轴承故障诊断

doi: 10.13700/j.bh.1001-5965.2021.0581
基金项目: 国家自然科学基金(62063020,61763028);甘肃省自然科学基金(20JR5RA463)
详细信息
    通讯作者:

    E-mail:wjh0615@lut.edu.cn

  • 中图分类号: TP277

Fault diagnosis of generator rolling bearing based on AE-BN

Funds: National Natural Science Foundation of China (62063020,61763028); Natural Science Foundation of Gansu Province, China (20JR5RA463)
More Information
  • 摘要:

    为解决风力发电机在复杂工况及耦合性、不确定性条件下故障识别的准确性问题,提出了一种基于自动编码器(AE)与贝叶斯网络(BN)的AE-BN故障诊断方法。采用AE对电流信号进行特征提取,得到能够高度表征信号的特征分量;基于故障与特征之间的因果关系,建立由故障位置、故障状态和故障特征搭建的三层BN;将AE的特征分量与BN的拓扑结构相结合建立风力发电机故障诊断模型,解决故障诊断中的不确定性问题,提高多故障诊断的准确性。实验结果表明:所提方法能够对故障特征信号进行分析及诊断,精确辨识不同故障类型,相比K近邻算法等具有明显优势。

     

  • 图 1  自动编码器结构

    Figure 1.  Structure of AE

    图 2  贝叶斯网络结构

    Figure 2.  Structure of BN

    图 3  滚动轴承故障诊断的贝叶斯网络模型

    Figure 3.  Bayesian network model for fault diagnosis of rolling bearings

    图 4  故障诊断方法流程

    Figure 4.  Fault diagnosis algorithm flow chart

    图 5  滚动轴承状况监测实验台

    Figure 5.  Rolling bearing condition monitoring test bench

    图 6  6种故障电流信号时域波形

    Figure 6.  Time domain waveform of six types of fault current signals

    图 7  特征提取散点图

    Figure 7.  Feature extraction scatter plot

    图 8  RadViz雷达图

    Figure 8.  RadViz radar map

    图 9  轴承故障分类混淆矩阵

    Figure 9.  Confusion matrix of bearing fault classification

    表  1  结构评分对比

    Table  1.   Comparison of structure scores

    结构搭建方法BDeu/104K2/104BIC/104
    贝叶斯搜索方法−3.2329−3.2417−3.2384
    贪婪厚细化方法−3.0882−3.0993−3.1018
    爬山搜索算法−2.2358−2.2754−2.7692
    下载: 导出CSV

    表  2  不同的运行条件

    Table  2.   Different operating conditions

    运行工况转速/(r·min−1)径向力/N负载转矩/(N·m)
    K0150010000.7
    K1150010000.1
    K290010000.7
    K31500 4000.7
    下载: 导出CSV

    表  3  故障类型与状态标签

    Table  3.   Fault types and status labels

    故障位置故障类型轴承代码标签
    $ C_{1} $IR-EDMKI011
    $ C_{1} $IR-manual electric engraverKI052
    $ C_{2} $NormalK0023
    $ C_{3} $OR-drillingKA074
    $ C_{3} $OR-EDMKA015
    $ C_{3} $OR-manual electric engraverKA056
     注:Normal表示正常数据,将其作为一种特殊的故障与其余5种故障一起进行故障分类的研究。
    下载: 导出CSV

    表  4  贝叶斯网络子节点条件概率

    Table  4.   Conditional probability of subnodes of Bayesian network

    节点节点取值父节点取值条件概率
    ${{\boldsymbol{F}}_1}$000.4807
    ${{\boldsymbol{F}}_2}$00,10.5111
    ${{\boldsymbol{F}}_2}$01,00.4962
    ${{\boldsymbol{F}}_2}$01,10.5128
    ${{\boldsymbol{F}}_3}$00,00.3068
    ${{\boldsymbol{F}}_3}$00,10.6031
    ${{\boldsymbol{F}}_3}$01,00.5204
    ${{\boldsymbol{F}}_3}$01,10.3753
    ${{\boldsymbol{F}}_4}$00.3050
    $ {{\boldsymbol{F}}_5} $00.4033
    ${{\boldsymbol{F}}_6}$00,10.4929
    ${{\boldsymbol{F}}_6}$01,00.4872
    下载: 导出CSV

    表  5  4种工况下不同故障诊断模型的分类精度对比

    Table  5.   Comparison of classification accuracy of different fault diagnosis models under four types of working conditions

    运行工况VMD-KNNAE-KNNAE-BN
    K00.71240.87330.9983
    K10.63240.89140.9772
    K20.72310.89320.9955
    K30.73770.87150.9981
    下载: 导出CSV
  • [1] 曾军, 陈艳峰, 杨苹, 等. 大型风力发电机组故障诊断综述[J]. 电网技术, 2018, 42(3): 849-860. doi: 10.13335/j.1000-3673.pst.2017.2311

    ZENG J, CHEN Y F, YANG P, et al. Review of fault diagnosis methods of large-scale wind turbines[J]. Power System Technology, 2018, 42(3): 849-860(in Chinese). doi: 10.13335/j.1000-3673.pst.2017.2311
    [2] 陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56(17): 91-107. doi: 10.3901/JME.2020.17.091

    CHEN S Q, PENG Z K, ZHOU P. Review of signal decomposition theory and its applications in machine fault diagnosis[J]. Journal of Mechanical Engineering, 2020, 56(17): 91-107(in Chinese). doi: 10.3901/JME.2020.17.091
    [3] 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81. doi: 10.7652/xjtuxb201505012

    TANG G J, WANG X L. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 73-81(in Chinese). doi: 10.7652/xjtuxb201505012
    [4] ZHONG J, YANG K. Failure prediction for linear ball bearings based on wavelet transformation and self-organizing map[C]//2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC). Piscataway: IEEE Press, 2018: 34-38.
    [5] 张超, 陈建军, 郭迅. 基于EMD能量熵和支持向量机的齿轮故障诊断方法[J]. 振动与冲击, 2010, 29(10): 216-220. doi: 10.3969/j.issn.1000-3835.2010.10.004

    ZHANG C, CHEN J J, GUO X. A gear fault diagnosis method based on EMD energy entropy and SVM[J]. Journal of Vibration and Shock, 2010, 29(10): 216-220(in Chinese). doi: 10.3969/j.issn.1000-3835.2010.10.004
    [6] CHIANG L H, KOTANCHEK M E, KORDON A K, et al. Fault diagnosis based on Fisher discriminant analysis and support vector machines[J]. Computers & Chemical Engineering, 2004, 28(8): 1389-1401.
    [7] SHAO S, MCALEER S, YAN R, et al. Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2446-2455. doi: 10.1109/TII.2018.2864759
    [8] SHAO H, JIANG H, ZHAO H, et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2017, 95: 187-204. doi: 10.1016/j.ymssp.2017.03.034
    [9] 陈东超. 基于贝叶斯网络的汽轮发电机组故障诊断方法及应用研究[D]. 北京: 华北电力大学(北京), 2018.

    CHEN D C. Research on methods and application of fault diagnosis for turbo-generator unit based on bayesian network[D]. Beijing: North China Electric Power University (Beijing), 2018(in Chinese).
    [10] 王双成, 张立, 郑飞. 异步动态贝叶斯网络分类器研究[J]. 计算机学报, 2020, 43(9): 1737-1754. doi: 10.11897/SP.J.1016.2020.01737

    WANG S C, ZHANG L, ZHENG F. Asynchronous dynamic Bayesian network classifiers[J]. Chinese Journal of Computers, 2020, 43(9): 1737-1754(in Chinese). doi: 10.11897/SP.J.1016.2020.01737
    [11] 仝兆景, 芦彤, 秦紫霓. 基于PSO-VMD与贝叶斯网络的滚动轴承故障诊断[J]. 河南理工大学学报(自然科学版), 2021, 40(1): 95-104. doi: 10.16186/j.cnki.1673-9787.2019060034

    TONG Z J, LU T, QIN Z N. Fault diagnosis of rolling bearing based on PSO-VMD and Bayesian network[J]. Journal of Henan Polytechnic University (Natural Science), 2021, 40(1): 95-104(in Chinese). doi: 10.16186/j.cnki.1673-9787.2019060034
    [12] 王金鑫, 王忠巍, 马修真, 等. 基于贝叶斯网络的柴油机润滑系统多故障诊断[J]. 控制与决策, 2019, 34(6): 1187-1194. doi: 10.13195/j.kzyjc.2017.1399

    WANG J X, WANG Z W, MA X Z, et al. Diagnosis of multiple faults of diesel engine lubrication system based on Bayesian networks[J]. Control and Decision, 2019, 34(6): 1187-1194(in Chinese). doi: 10.13195/j.kzyjc.2017.1399
    [13] 尹爱军, 王昱, 戴宗贤, 等. 基于变分自编码器的轴承健康状态评估[J]. 振动、测试与诊断, 2020, 40(5): 1011-1016.

    YIN A J, WANG Y, DAI Z X, et al. Evaluation method of bearing health state based on variational auto-encoder[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(5): 1011-1016(in Chinese).
    [14] 孙叶, 王钢, 魏东. 贝叶斯网络在智能电网研究中的应用[J]. 自动化应用, 2020(7): 108-109. doi: 10.19769/j.zdhy.2020.07.039

    SUN Y, WANG G, WEI D. The application of Bayesian network in the research of smart grid[J]. Automation Application, 2020(7): 108-109(in Chinese). doi: 10.19769/j.zdhy.2020.07.039
    [15] CAI B, HUANG L, XIE M. Bayesian networks in fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13(5): 2227-2240. doi: 10.1109/TII.2017.2695583
    [16] 李硕豪, 张军. 贝叶斯网络结构学习综述[J]. 计算机应用研究, 2015, 32(3): 641-646. doi: 10.3969/j.issn.1001-3695.2015.03.001

    LI S H, ZHANG J. Review of Bayesian networks structure learning[J]. Application Research of Computers, 2015, 32(3): 641-646(in Chinese). doi: 10.3969/j.issn.1001-3695.2015.03.001
    [17] WEN Z, KVETON B, ERIKSSON B, et al. Sequential Bayesian search[C]//Proceedings of the 30th International Conference on Machine Learning. New York: ACM, 2013: 226-234.
    [18] CHENG J, BELL D A, LIU W. An algorithm for Bayesian belief network construction from data[C]//Proceedings of the 6th International Workshop on Artificial Intelligence and Statistics. Amsterdam: Elesvier, 1997: 83-90.
    [19] CONSTANTINOU A C, LIU Y, CHOBTHAM K, et al. Large-scale empirical validation of Bayesian network structure learning algorithms with noisy data[J]. International Journal of Approximate Reasoning, 2021, 131: 151-188. doi: 10.1016/j.ijar.2021.01.001
    [20] BEHJATI S, BEIGY H. Improved K2 algorithm for Bayesian network structure learning[J]. Engineering Applications of Artificial Intelligence, 2020, 91: 103617. doi: 10.1016/j.engappai.2020.103617
    [21] 刘浩然, 王念太, 王毅, 等. 基于V-结构&对数似然函数定向与禁忌爬山的贝叶斯网络结构算法[J]. 电子与信息学报, 2021, 43(11): 3272-3281. doi: 10.11999/JEIT210032

    LIU H R, WANG N T, WANG Y, et al. Bayesian network structure algorithm based on V-structure & Log-likelihood orientation and tabu hill climbing[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3272-3281(in Chinese). doi: 10.11999/JEIT210032
    [22] LESSMEIER C, KIMOTHO J K, ZIMMER D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification[C]//European Conference of the Prognostics and Health Management Society, 2016: 1-17.
    [23] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  63
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 录用日期:  2021-12-27
  • 网络出版日期:  2022-01-26
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答