留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高马赫数空腔非定常流动机理

张培红 程晓辉 陈洪杨 贾洪印 罗磊 唐银

张培红,程晓辉,陈洪杨,等. 高马赫数空腔非定常流动机理[J]. 北京航空航天大学学报,2023,49(8):1940-1947 doi: 10.13700/j.bh.1001-5965.2021.0609
引用本文: 张培红,程晓辉,陈洪杨,等. 高马赫数空腔非定常流动机理[J]. 北京航空航天大学学报,2023,49(8):1940-1947 doi: 10.13700/j.bh.1001-5965.2021.0609
ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0609
Citation: ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0609

高马赫数空腔非定常流动机理

doi: 10.13700/j.bh.1001-5965.2021.0609
基金项目: 国家数值风洞工程项目
详细信息
    通讯作者:

    E-mail:rorzey@buaa.edu.cn

  • 中图分类号: V221+.3;O355

Unsteady flow mechanism of high Mach number cavity

Funds: National Numerical Windtunnel Project
More Information
  • 摘要:

    空腔流动广泛存在于飞行器中,内埋弹舱流动是最典型的空腔流动之一。空腔流动结构复杂,并且由于剪切层、涡和激波的相互作用,会产生强烈的压力脉动。针对高马赫数空腔强剪切、强激波的流动特点,提出基于非结构混合网格的中心型和迎风型格式混合方法,通过高马赫数空腔标模算例验证,计算得到空腔1阶、2阶主频与试验数据相比误差不超过5%,空腔噪声强度与试验数据相比误差不超过10 dB,验证了所提方法的可靠性。采用数值模拟方法,开展高马赫数(大于2)空腔流动的脉动特性研究,分析了不同马赫数对空腔声压级的影响,讨论不同马赫数下空腔脉动的产生的声学机制。研究表明:在高马赫数条件下,剪切层动力学与空腔声学的耦合减小,随马赫数增加,空腔振荡的物理机制由Rossiter模型的旋涡声学共振机制转变为闭箱声学机制。

     

  • 图 1  空腔标模试验模型

    Figure 1.  Test model of cavity standard model

    图 2  空腔标模网格

    Figure 2.  Grid of cavity standard model

    图 3  空腔后壁面上监控点K的位置

    Figure 3.  Location of pressure orifice K on the rear wall of cavity

    图 4  监控点K处CFD计算得到的空腔声压等级与试验比较(Ma = 3.51)

    Figure 4.  Comparison of CFD calculation with test results of SPL for monitoring point K (Ma = 3.51)

    图 5  Ma = 2.0时,L/D = 8空腔不同时刻涡量云图和压力等值线图

    Figure 5.  Instantaneous vorticity contours and pressure contour plots at different times for L/D = 8 cavity at Ma = 2.0

    图 6  Ma = 3.0时,L/D = 8空腔不同时刻涡量云图和压力等值线图

    Figure 6.  Instantaneous vorticity contours and pressure contour plots at different times for L/D = 8 cavity at Ma = 3.0

    图 7  Ma = 4.0时,L/D = 8空腔不同时刻涡量云图和压力等值线图

    Figure 7.  Instantaneous vorticity contours and pressure contour plots at different times for L/D = 8 cavity at Ma = 4.0

    图 8  Ma =2.0, 3.0, 4.0时,L/D = 8空腔后壁面y/D = 0.75处监控点A的频谱图

    Figure 8.  Frequency specturum of monitoring point A at y/D = 0.75 for the rear wall of L/D = 8 cavity at Ma = 2.0, 3.0, 4.0

    图 9  CFD计算得到的斯特劳哈尔数同Rossiter声学模型和闭箱声学模型预测值比较

    Figure 9.  Comparison of Strouhal number of CFD calculation with predicted values of Rossiter’s equation and closed-box acoustic model

    表  1  CFD计算得到的监控点K不同模态频率、幅值与试验值比较

    Table  1.   Comparison of different frequencies and amplitudes of CFD calculation with text results for monitoring point K

    模态SPL频率/HzSPL幅值/dB频率
    误差/%
    幅值
    误差/%
    试验值计算值 试验值计算值
    1阶模态287275132.5135.64.183.1
    2阶模态695689132.1135.80.863.7
    3阶模态11521195132.81383.735.2
    4阶模态15271516131134.70.723.7
    下载: 导出CSV

    表  2  CFD计算得到的全局声压等级与试验值比较

    Table  2.   Comparison CFD calculation with text results of OASPL

    数据类型试验值/dB计算值/dB误差/dB
    OASPL151.94154.792.85
    下载: 导出CSV

    表  3  CFD计算、Rossiter声学模型和闭箱声学模型得到的$ fL/{U_\infty } $

    Table  3.   Strouhal Number of CFD calculation with predicted values of Rossiter’s equation and closed-box acoustic model

    Ma1阶模态2阶模态3阶模态4阶模态
    CFD
    计算值
    Rossiter
    声学模型
    闭箱声学
    模型
    CFD
    计算值
    Rossiter
    声学模型
    闭箱声学
    模型
    CFD
    计算值
    Rossiter
    声学模型
    闭箱声学
    模型
    CFD
    计算值
    Rossiter
    声学模型
    闭箱声学
    模型
    0.850.211 760.294 240.629 310.677 840.686 571.258 611.099 901.078 891.887 911.465 661.471 212.517 21
    1.350.267 600.257 720.432 640.628 800.601 360.865 270.955 500.944 991.297 911.266 661.288 621.730 55
    2.00.254 480.231 120.335 410.559 850.539 270.670 820.839 770.847 431.006 231.170 591.155 591.341 64
    3.00.191 760.211 430.278 890.557 840.493 340.557 770.836 760.775 250.836 661.192 521.057 161.115 55
    4.00.241 260.202 360.256 170.562 930.472 180.512 350.742 330.768 521.025 991.011 821.024 70
    下载: 导出CSV
  • [1] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3): 186-216. doi: 10.1016/j.paerosci.2010.11.002
    [2] 欧阳绍修, 刘学强, 张宝兵. DES方法模拟空腔流动及噪声分析[J]. 南京航空航天大学学报, 2012, 44(6): 792-796.

    OUYANG S X, LIU X Q, ZHANG B B. Cavity flow simulation and noise analysis using DES method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(6): 792-796(in Chinese).
    [3] KRISGNAMUTY K. Acoustic radiation from two-dimensional rectangular cutouts in aerodynamic: NACATN-3487[R]. Washington, D. C. : NASA, 1955.
    [4] ROSHKO A. Some measurements of flow in a rectangular cut-out: NACA TN3488[R]. Washington, D. C. : NASA, 1955.
    [5] MAULL D J, EAST L F. Three-dimensional flow in cavities[J]. Journal of Fluid Mechanics, 1963, 16: 620-632. doi: 10.1017/S0022112063001014
    [6] ROSSITER J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[J]. Royal Aircraft Establishment Technical Report, 1964, 3438: 8-12.
    [7] HELLER H H, BLISS D B. Aerodynamically induced pressure oscillations in cavities, physical mechanisms and suppression concepts: TR-74-133 [R]. Ohio: AFFDL, 1975.
    [8] RAMAN G, ENVIA E, BENCIC T. Tone noise and nearfield pressure produced by jet-cavity interaction[C]// Proceedings of the 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999.
    [9] UKEILEY L, MURRAY N. Velocity and surface pressure measurements in an open cavity[J]. Experiments in Fluids, 2005, 38(5): 656-671. doi: 10.1007/s00348-005-0948-x
    [10] MURRAY R, ELLIOTT G. The compressible shear layer over a two-dimensional cavity[C]// Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998.
    [11] KAUFMAN L G, MACIULAITIS A, CLARK R L. Mach 0.6 to 3.0 flows over rectangular cavities: AFWAL TR-82-3112 [R]. Wright-Patterson: Airforce Wright Aeronautical Laborattories, 1983.
    [12] ZHANG X, RONA A, EDWARDS J A. An observation of pressure waves around a shallow cavity[J]. Journal of Sound and Vibration, 1998, 214(4): 771-778. doi: 10.1006/jsvi.1998.1635
    [13] RIZZETTA D P, VISBAL M R. Large-eddy simulation of supersonic cavity flow fields including flow control[J]. AIAA Journal, 2003, 41(8): 1452-1462. doi: 10.2514/2.2128
    [14] CHANG K, CONSTANTINESCU G, PARK S O. Analysis of the flow and mass transfer processes for the incompressible flow past an open cavity with a laminar and a fully turbulent incoming boundary layer[J]. Journal of Fluid Mechanics, 2006, 561: 113. doi: 10.1017/S0022112006000735
    [15] PENG S H, LEICHER S. DES and hybrid RANS–LES modelling of unsteady pressure oscillations and flow features in a rectangular cavity[C]//Advances in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Berlin: Springer, 2008: 132-141.
    [16] HAMED A, BASU D, DAS K. Detached eddy simulations of supersonic flow over cavity[C]// Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
    [17] 刘俊, 杨党国, 王显圣, 等. 湍流边界层厚度对三维空腔流动的影响[J]. 航空学报, 2016, 37(2): 475-483.

    LIU J, YANG D G, WANG X S, et al. Effect of turbulent boundary layer thickness on a three-dimensional cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 475-483(in Chinese).
    [18] 马小亮, 杨国伟. 凹腔非定常特性的数值模拟[J]. 计算物理, 2010, 27(3): 375-380.

    MA X L, YANG G W. Simulation of unsteady cavity flow[J]. Chinese Journal of Computational Physics, 2010, 27(3): 375-380(in Chinese).
    [19] 司海青, 王同光. 边界条件对三维空腔流动振荡的影响[J]. 南京航空航天大学学报, 2006, 38(5): 595-599.

    SI H Q, WANG T G. Influence of boundary condition on 3-D cavity flow-induced oscillations[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(5): 595-599(in Chinese).
    [20] 王一丁, 郭亮, 童明波, 等. 高速飞行器空腔脉动压力主动控制与非线性数值模拟[J]. 航空学报, 2015, 36(1): 213-222.

    WANG Y D, GUO L, TONG M B, et al. Active control and nonlinear numerical simulation for oscillating pressure of high-speed aircraft cavity[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 213-222(in Chinese).
    [21] STRELETS M. Detached eddy simulation of massively separated flows[C]// Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
    [22] 肖志祥, 罗堃宇, 刘健. 宽速域RANS-LES混合方法的发展及应用[J]. 空气动力学学报, 2017, 35(3): 338-353.

    XIAO Z X, LUO K Y, LIU J. Developments and applications of hybrid RANS-LES methods for wide-speed-range flows[J]. Acta Aerodynamica Sinica, 2017, 35(3): 338-353(in Chinese).
    [23] 肖志祥, 崔文瑶, 刘健, 等. 新一代战斗机非定常流动数值研究综述[J]. 航空学报, 2020, 41(6): 523451.

    XIAO Z X, CUI W Y, LIU J, et al. Review of numerical research on unsteady flows of the new generation fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523451(in Chinese).
    [24] TRAVIN A K, SHUR M L, SPALART P R, et al. Improvement of delayed detached-eddy simulation for LES with wall modeling[C]//European Conference on Computational Fluid Dynamics. Delft: TU Delft, 2006: 32-410.
    [25] BAUER R C, DIX R E. Engineering model of unsteady flow in a cavity: AEDC-TR-91-17 [R]. Arnold : Arnold Engineering Development Center, 1991.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  57
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 录用日期:  2022-01-17
  • 网络出版日期:  2022-03-10
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答