留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无环流四象限双输入双Buck航空静止变流器

于兆龙 葛红娟 王永帅 尹航 李石振

于兆龙,葛红娟,王永帅,等. 无环流四象限双输入双Buck航空静止变流器[J]. 北京航空航天大学学报,2023,49(8):2176-2186 doi: 10.13700/j.bh.1001-5965.2021.0625
引用本文: 于兆龙,葛红娟,王永帅,等. 无环流四象限双输入双Buck航空静止变流器[J]. 北京航空航天大学学报,2023,49(8):2176-2186 doi: 10.13700/j.bh.1001-5965.2021.0625
YU Z L,GE H J,WANG Y S,et al. Dual-input dual-Buck aviation static inverter with four-quadrant operation and circulation-free[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2176-2186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0625
Citation: YU Z L,GE H J,WANG Y S,et al. Dual-input dual-Buck aviation static inverter with four-quadrant operation and circulation-free[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2176-2186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0625

无环流四象限双输入双Buck航空静止变流器

doi: 10.13700/j.bh.1001-5965.2021.0625
基金项目: 国家自然科学基金(U1933115,U2133203)
详细信息
    作者简介:

    于兆龙 男,硕士研究生。主要研究方向:功率电子变换技术

    葛红娟 女,博士,教授,博士生导师。主要研究方向:矩阵变换器的建模与控制、电机驱动、适航技术等

    通讯作者:

    E-mail:allenge@nuaa.edu.cn

  • 中图分类号: TM464

Dual-input dual-Buck aviation static inverter with four-quadrant operation and circulation-free

Funds: National Natural Science Foundation of China (U1933115,U2133203)
More Information
  • 摘要:

    航空静止变流器(ASI)是机载电源系统的关键部分,为进一步提升ASI的工作效率和可靠性,在双输入双Buck逆变技术基础上提出一种高效高可靠性无环流ASI拓扑。该拓扑不仅能够四象限运行和部分功率单级传输,而且实现了所有工作模态下桥臂无环流运行。分析了拓扑的四象限运行工作模态、拓扑的等效数学模型等,研究了基于单极性层叠式双载波调制的无环流ASI主功率管的驱动方式。优化了调节器参数,拓展了变流器闭环控制系统的稳定裕度。开展了该拓扑与全桥逆变等拓扑的开关损耗、工作效率等方面的实验研究。结果表明:该拓扑及其控制方法正确可行,部分功率实现了单级传输,工作效率高,并且具有无桥臂直通风险、无需体二极管续流等优点,为高效高可靠性航空静止变流技术奠定了基础。

     

  • 图 1  DIDBI导通模态和无环流ASI拓扑

    Figure 1.  DIDBI conduction mode and circulation-free ASI topology

    图 2  无环流ASI四象限运行工作模态

    Figure 2.  Operating modes of circulation-free ASI four-quadrant runtime

    图 3  无环流ASI驱动

    Figure 3.  Circulation-free ASI drivers

    图 4  式(4)、式(5)示意图

    Figure 4.  Schematic diagram of formula (4) and (5)

    图 5  采用电压前馈的无环流ASI双闭环控制

    Figure 5.  Circulation-free ASI double closed loop control using voltage feed forward

    图 6  调整前开环电流内环Bode图

    Figure 6.  Bode diagram of open loop current inner loop

    图 7  kir的根轨迹图

    Figure 7.  Root trajectory graph of kir

    图 8  ASI拓扑的开环电流内环Bode图

    Figure 8.  Open loop current inner loop Bode diagram of ASI topology

    图 9  调整前开环电压外环Bode图

    Figure 9.  Bode diagram of open loop voltage outer loop

    图 10  kvr的根轨迹图

    Figure 10.  Root trajectory graph of kvr

    图 11  ASI拓扑的开环电压外环Bode图

    Figure 11.  Open loop voltage outer loop Bode diagram of ASI topology

    图 12  无环流ASI实验样机

    Figure 12.  Experimental prototype of circulation-free ASI

    图 13  无环流ASI输出

    Figure 13.  Circulation-free ASI output

    图 15  对比实验结果

    Figure 15.  Comparative experimental results

    图 14  无环流ASI拓扑感性负载突变

    Figure 14.  Circulation-free ASI topology inductive load change

    图 16  变流器效率对比

    Figure 16.  Converter efficiency comparison

    表  1  四象限与各模态对应关系

    Table  1.   Four quadrants corresponding to each mode

    象限模态
    象限Ⅰ(iL>0,uo>0)uo>UL模态1
    象限Ⅰ(iL>0,uo>0)uo<UL模态2
    象限Ⅱ(iL>0,uo<0)−uo<UL模态3
    象限Ⅱ(iL>0,uo<0)−uo>UL模态4
    模态5
    象限Ⅲ(iL<0,uo<0)−uo>UL模态6
    象限Ⅲ(iL<0,uo<0)−uo<UL模态7
    象限Ⅳ(iL<0,uo>0)uo<UL模态8
    象限Ⅳ(iL<0,uo>0)uo>UL模态9
    模态10
    下载: 导出CSV

    表  2  控制器参数

    Table  2.   Controller parameters

    控制环ωo/(rad·s−1)ωc/(rad·s−1)kipkir相位裕度/(°)开环截止频率/kHz基波频率处的增益/dB
    电流内环2512190.41710045.36.6866.4
    电压外环2512190.493150633.3868.5
    下载: 导出CSV
  • [1] NGUYEN B L H, CHA H, KIM H G. Single-phase six-switch dual-output inverter using dual-buck structure[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 7894-7903. doi: 10.1109/TPEL.2017.2774363
    [2] ALI KHAN A, CHA H, LAI J S. Cascaded dual-buck inverter with reduced number of inductors[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 2847-2856. doi: 10.1109/TPEL.2017.2701400
    [3] AKBAR F, CHA H, AHMED H F, et al. A family of single-stage high-gain dual-buck split-source inverters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1701-1713. doi: 10.1109/JESTPE.2019.2894384
    [4] HONG F, LIU J, JI B J, et al. Single inductor dual buck full-bridge inverter[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2): 4869-4877.
    [5] YAO Z L, XIAO L. Two-switch dual-buck grid-connected inverter with hysteresis current control[J]. IEEE Transactions on Power Electronics, 2012, 27(7): 3310-3318. doi: 10.1109/TPEL.2011.2179318
    [6] ZHANG X G, ZHANG L, ZHANG Y C. Model predictive current control for pmsm drives with parameter robustness improvement[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1645-1657. doi: 10.1109/TPEL.2018.2835835
    [7] HUANG Q Y, HUANG A Q. Variable frequency average current mode control for ZVS symmetrical dual-buck H-bridge all-GaN inverter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(4): 4416-4427. doi: 10.1109/JESTPE.2019.2940270
    [8] NGUYEN T T, CHA H, NGUYEN B L H, et al. A novel single-phase three-level dual-buck inverter[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3365-3376. doi: 10.1109/TPEL.2019.2932890
    [9] HONG F, LIU J, JI B J, et al. Interleaved dual buck full-bridge three-level inverter[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 964-974. doi: 10.1109/TPEL.2015.2421295
    [10] ZHANG L, SUN K, XING Y, et al. A family of five-level dual buck full bridge inverters for grid-tied applications[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7029-7042.
    [11] YANG F, GE H J, YANG J F, et al. A family of dual-buck inverters with an extended low-voltage DC-input port for efficiency improvement based on dual-input pulsating voltage-source cells[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3115-3128. doi: 10.1109/TPEL.2017.2706762
    [12] YANG F, GE H J, YANG J F, et al. Dual-input grid-connected photovoltaic inverter with two integrated DC-DC converters and reduced conversion stages[J]. IEEE Transactions on Energy Conversion, 2019, 34(1): 292-301. doi: 10.1109/TEC.2018.2878893
    [13] 杨帆, 葛红娟, 党润芸, 等. 一种双直流输入多电平双Buck逆变器[J]. 电工技术学报, 2018, 33(6): 1320-1327. doi: 10.19595/j.cnki.1000-6753.tces.161331

    YANG F, GE H J, DANG R Y, et al. A dual-DC-input multi-level dual-Buck inverter[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1320-1327(in Chinese). doi: 10.19595/j.cnki.1000-6753.tces.161331
    [14] 于兆龙, 葛红娟, 李尚, 等. Boost电路开关瞬间电压尖峰产生机理及抑制方法[J]. 北京航空航天大学学报, 2020, 46(1): 198-209. doi: 10.13700/j.bh.1001-5965.2019.0154

    YU Z L, GE H J, LI S, et al. Mechanism of voltage spike production during switching transients and its suppression methods in Boost converter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 198-209(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0154
    [15] AZER P, EMADI A. Generalized state space average model for multi-phase interleaved buck, boost and buck-boost DC-DC converters: Transient, steady-state and switching dynamics[J]. IEEE Access, 2020, 8: 77735-77745. doi: 10.1109/ACCESS.2020.2987277
    [16] JIANG T Y, JU P, WANG C, et al. Coordinated control of air conditioning loads for system frequency regulation[J]. IEEE Transactions on Smart Grid, 2021, 12(1): 548-560. doi: 10.1109/TSG.2020.3022010
    [17] 张瑾, 齐铂金, 张少如. 单相Z源逆变器控制策略[J]. 北京航空航天大学学报, 2010, 36(3): 357-362. doi: 10.13700/j.bh.1001-5965.2010.03.017

    ZHANG J, QI B J, ZHANG S R. Control strategy for single-phase Z-source inverter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(3): 357-362(in Chinese). doi: 10.13700/j.bh.1001-5965.2010.03.017
    [18] MIRSAEIDI S, TZELEPIS D, HE J, et al. A controllable thyristor based commutation failure inhibitor for LCC-HVDC transmission systems[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 3781-3792. doi: 10.1109/TPEL.2020.3021284
    [19] 李正明, 张国松, 方聪聪. 增强型开关电感准Z源逆变器[J]. 北京航空航天大学学报, 2016, 42(9): 1803-1811. doi: 10.13700/j.bh.1001-5965.2015.0579

    LI Z M, ZHANG G S, FANG C C. Enhanced switched-inductor quasi-Z-source inverter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1803-1811(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0579
    [20] 王亭岭, 熊军华, 张瑾. 基于预设载波的随机开关频率调制方法[J]. 北京航空航天大学学报, 2013, 39(3): 355-360. doi: 10.13700/j.bh.1001-5965.2013.03.028

    WANG T L, XIONG J H, ZHANG J. Random PWM method based on pre-determined carrier frequencies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3): 355-360(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.03.028
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  39
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 录用日期:  2022-02-13
  • 网络出版日期:  2022-03-10
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答