留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

10 cm考夫曼型离子推力器放电室关键参数优化

胡竟 耿海 杨福全 郭德洲 王东升 李建鹏

胡竟,耿海,杨福全,等. 10 cm考夫曼型离子推力器放电室关键参数优化[J]. 北京航空航天大学学报,2023,49(8):1974-1981 doi: 10.13700/j.bh.1001-5965.2021.0631
引用本文: 胡竟,耿海,杨福全,等. 10 cm考夫曼型离子推力器放电室关键参数优化[J]. 北京航空航天大学学报,2023,49(8):1974-1981 doi: 10.13700/j.bh.1001-5965.2021.0631
HU J,GENG H,YANG F Q,et al. Optimization of discharge chamber key parameters for 10 cm Kaufman xenon ion thruster[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1974-1981 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0631
Citation: HU J,GENG H,YANG F Q,et al. Optimization of discharge chamber key parameters for 10 cm Kaufman xenon ion thruster[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1974-1981 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0631

10 cm考夫曼型离子推力器放电室关键参数优化

doi: 10.13700/j.bh.1001-5965.2021.0631
基金项目: 民用航天预先研究项目(D010509)
详细信息
    通讯作者:

    E-mail:marine115@126.com

  • 中图分类号: V439+.4

Optimization of discharge chamber key parameters for 10 cm Kaufman xenon ion thruster

Funds: Civil Space Advance Research Project (D010509)
More Information
  • 摘要:

    放电室构型设计是离子推力器结构设计的基础与核心,直接影响到放电室工作能效及整机工作寿命。针对新型航天器在轨飞行任务对大推力、长寿命连续变推力离子推力器的应用需求,探究了影响10 cm离子推力器整机效能的放电室关键参数因子,揭示了发散场放电室的磁场发散度、电子通道面积及阴极位置等敏感参数对放电室性能的影响作用关系。开展了10 cm离子推力器放电室参数构型的优化与验证。结果表明:在不改变整机结构的情况下,通过优化放电室关键参数,10 cm离子推力器最大输出推力由20 mN提升至25 mN,提升近25%,推力调节范围由1~20 mN扩展至1~25 mN,全范围内推力分辨率均优于50 μN,且推力器在20 mN最佳工作点的阳极电压由43.5 V降至38.4 V,放电损耗由345 W/A降至308 W/A,预估整机寿命将由15 000 h提升至17 500 h。研究为推动10 cm离子推力器的在轨扩展应用提供了一定的技术支撑。

     

  • 图 1  10 cm离子推力器工作原理

    Figure 1.  Working process of 10 cm ion thruster

    图 2  发散场推力器电子通道示意图

    Figure 2.  Schematic of electronic channel in divergent magnetic field thruster

    图 3  阴极位置调节示意图

    Figure 3.  Schematic of orifice plate height setting

    图 4  10 cm离子推力器工程样机实物

    Figure 4.  Prototype of 10 cm ion thruster engineering

    图 5  不同磁场发散度下放电损耗与放电室推进剂利用率之间的关系

    Figure 5.  Discharge loss versus mass utilization efficiency under different magnetic field divergent

    图 6  不同电子通道面积下阳极电压和放电损耗与励磁电流之间的关系

    Figure 6.  Anode potential and discharge loss versus magnet current under different electronic channel areas

    图 7  不同阴极位置下励磁电流和阴极流率占比对放电损耗的影响

    Figure 7.  Magnet current and cathode flowrate versus discharge loss under different orifice plate heights

    图 8  25 mN工作点下连续工作3 h的推力变化

    Figure 8.  Thrust changes at 25 mN operating point for 3 h continues operation

    图 9  1~25 mN范围内的推力调节变化规律

    Figure 9.  Thrust regulation and change rule over range 1~25 mN

    图 10  优化前后加速栅工作200 h时的状态对比

    Figure 10.  Comparison of state of accelerator grid having worked for 200 h before and after optimization

    表  1  放电室关键参数优化前后状态对比

    Table  1.   Comparison of key parameters of discharge chamber before and after optimization

    测试结果Kd/(°)S/mm2h/mm
    优化前6514350
    优化后7010893
    下载: 导出CSV

    表  2  推力器性能测试对比

    Table  2.   Comparison of thrust test results

    优化改进阳极电压
    /V
    阳极电压振荡
    /V
    阴极电压
    /V
    阴极电压振荡
    /V
    推力
    /mN
    放电损耗
    / (W·A−1)
    推进剂利用率
    /%
    功率
    /W
    优化前43.52813.2620.1034555.7604
    优化后38.4109.8520.1130859.6584
    下载: 导出CSV
  • [1] 郑茂繁, 张天平, 孟伟, 等. 20 cm氙离子推力器性能扩展研究[J]. 推进技术, 2015, 36(7): 1116-1120. doi: 10.13675/j.cnki.tjjs.2015.07.021

    ZHENG M F, ZHANG T P, MENG W, et al. Research of improvement performance for 20 cm xenon ion thruster[J]. Journal of Propulsion Technology, 2015, 36(7): 1116-1120(in Chinese). doi: 10.13675/j.cnki.tjjs.2015.07.021
    [2] 杨福全, 万耿民, 唐福俊, 等. 电推力器气路高电压绝缘技术研究[J]. 真空科学与技术学报, 2014, 34(12): 1290-1293. doi: 10.13922/j.cnki.cjovst.2014.12.03

    YANG F Q, WAN G M, TANG F J, et al. Novel type of high voltage xenon propellant insulator for electric thruster[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(12): 1290-1293(in Chinese). doi: 10.13922/j.cnki.cjovst.2014.12.03
    [3] 张天平, 田华兵, 孙运奎. 离子推进系统用于GEO卫星南北位保使命的能力与效益[J]. 真空与低温, 2010, 16(2): 72-77. doi: 10.3969/j.issn.1006-7086.2010.02.002

    ZHANG T P, TIAN H B, SUN Y K. Capability and benefit of the lips-200 system for nssk mission of geo satellites[J]. Vacuum and Cryogenics, 2010, 16(2): 72-77(in Chinese). doi: 10.3969/j.issn.1006-7086.2010.02.002
    [4] 胡竟, 江豪成, 王亮, 等. 阴极挡板对30 cm氙离子推力器性能影响的研究[J]. 真空与低温, 2015, 21(2): 103-106. doi: 10.3969/j.issn.1006-7086.2015.02.010

    HU J, JIANG H C, WANG L, et al. Study on performances of 30 cm xenon ion thruster subjected to cathode baffle[J]. Vacuum and Cryogenics, 2015, 21(2): 103-106(in Chinese). doi: 10.3969/j.issn.1006-7086.2015.02.010
    [5] 胡竟, 王亮, 张天平, 等. LIPS-300离子推力器环形会切磁场等效磁路分析研究[J]. 推进技术, 2018, 39(3): 715-720. doi: 10.13675/j.cnki.tjjs.2018.03.028

    HU J, WANG L, ZHANG T P, et al. Research on equivalent magnetic circuit of ring-cusp magnet field for LIPS-300 ion thruster[J]. Journal of Propulsion Technology, 2018, 39(3): 715-720(in Chinese). doi: 10.13675/j.cnki.tjjs.2018.03.028
    [6] 杨福全, 王蒙, 郑茂繁, 等. 10 cm离子推力器放电室性能优化研究[J]. 推进技术, 2017, 38(1): 235-240. doi: 10.13675/j.cnki.tjjs.2017.01.031

    YANG F Q, WANG M, ZHENG M F, et al. Optimization of performance of discharge chamber of a 10 cm diameter ion thruster[J]. Journal of Propulsion Technology, 2017, 38(1): 235-240(in Chinese). doi: 10.13675/j.cnki.tjjs.2017.01.031
    [7] 席竹君, 杨福全, 高俊, 等. 励磁电流对离子推力器推力变化影响研究[J]. 真空与低温, 2017, 23(2): 98-101. doi: 10.3969/j.issn.1006-7086.2017.02.007

    XI Z J, YANG F Q, GAO J, et al. The research on the influence of magnet current towards the ion thruster thrust[J]. Vacuum and Cryogenics, 2017, 23(2): 98-101(in Chinese). doi: 10.3969/j.issn.1006-7086.2017.02.007
    [8] 胡竟, 杨福全, 郭德洲, 等. 基于CFD的10 cm氙离子推力器阳极推进剂供给方式优化[J]. 北京航空航天大学学报, 2020, 46(8): 1476-1484.

    HU J, YANG F Q, GUO D Z, et al. Optimization of anode propellant allocation manner of 10 cm xenon ion thruster based on CFD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1476-1484(in Chinese).
    [9] 胡竟, 杨福全, 郭德洲, 等. 10 cm氙离子推力器变推力特性研究[J]. 推进技术, 2020, 41(10): 2382-2389. doi: 10.13675/j.cnki.tjjs.190562

    HU J, YANG F Q, GUO D Z, et al. Analysis on variable-thrust characteristic of 10 cm xenon ion thruster[J]. Journal of Propulsion Technology, 2020, 41(10): 2382-2389(in Chinese). doi: 10.13675/j.cnki.tjjs.190562
    [10] BROPHY J R. Ion thruster performance model: NASA CR-174810 [R]. Washington, D. C. : NASA, 1984.
    [11] WILBUR P J, BROPHY J R. The effect of discharge chamber wall temperature on ion thruster performance[J]. AIAA Journal, 1986, 24(2): 278-283. doi: 10.2514/3.9257
    [12] KERSLAKE W R, GOLDMAN R G, NIEBERDING W C. SERT II - Mission, thruster performance, and in-flight thrust measurements[J]. Journal of Spacecraft and Rockets, 1971, 8(3): 213-224. doi: 10.2514/3.30250
    [13] BECHTEL R. The 30 cm J series mercury bombardment thruster: AIAA1981-714[R]. Reston: AIAA, 1981.
    [14] HIATT J, WILBUR P. Ring cusp discharge chamber performance optimization: AIAA1985-2007[R]. Reston: AIAA, 1985.
    [15] OGUNJOBI T A, MENART J A. Computational study of ring-cusp magnet configurations that provide maximum electron confinement: AIAA-2006-4489[R]. Reston: AIAA, 2006.
    [16] BENNETT W, OGUNJOBI T A, MENART J A. Computational study of the effects of cathode placement, electron energy, and magnetic field strength on the confinement of electrons: AIAA-2007-5248 [R]. Reston: AIAA, 2007.
    [17] MENART J A, PATIERSON M J. Magnetic circuit for enhanced discharge chamber performance of a small ion thruster: AIAA-1998-3343 [R]. Reston: AIAA, 1998.
    [18] 陈娟娟, 张天平, 贾艳辉, 等. 不同磁感强度下LIPS-200离子推力器放电室性能的研究[J]. 真空与低温, 2013, 19(3): 163-167. doi: 10.3969/j.issn.1006-7086.2013.03.009

    CHEN J J, ZHANG T P, JIA Y H, et al. The study of the effect of magnetic field strength on the performance of the LIPS-200 ion thruster[J]. Vacuum and Cryogenics, 2013, 19(3): 163-167(in Chinese). doi: 10.3969/j.issn.1006-7086.2013.03.009
    [19] 陈娟娟, 张天平, 贾艳辉, 等. 20 cm氙离子推力器放电室性能优化[J]. 强激光与粒子束, 2012, 24(10): 2469-2473. doi: 10.3788/HPLPB20122410.2469

    CHEN J J, ZHANG T P, JIA Y H, et al. Performance optimization of 20 cm xenon ion thruster discharge chamber[J]. High Power Laser and Particle Beams, 2012, 24(10): 2469-2473(in Chinese). doi: 10.3788/HPLPB20122410.2469
    [20] 孙明明, 张天平, 吴先明. 20 cm离子推力器放电室流场计算模拟[J]. 强激光与粒子束, 2015, 27(5): 206-212.

    SUN M M, ZHANG T P, WU X M. Flow field simulation of 20 cm diameter ion thruster discharge chamber[J]. High Power Laser and Particle Beams, 2015, 27(5): 206-212(in Chinese).
    [21] 吴先明, 张天平, 陈娟娟, 等. 磁路对30 cm离子推力器性能影响研究[J]. 推进技术, 2016, 37(1): 193-200. doi: 10.13675/j.cnki.tjjs.2016.01.025

    WU X M, ZHANG T P, CHEN J J, et al. Study on effects of magnetic circuit on performance of 30 cm diameter ion thruster[J]. Journal of Propulsion Technology, 2016, 37(1): 193-200(in Chinese). doi: 10.13675/j.cnki.tjjs.2016.01.025
    [22] 鹿畅, 夏广庆, 孙斌. 环型离子推力器放电室参数对推力器性能的影响[J]. 真空与低温, 2022, 28(1): 39-47. doi: 10.3969/j.issn.1006-7086.2022.01.005

    LU C, XIA G Q, SUN B. Effect of discharge chamber parameters of annular ion thruster on the performance[J]. Vacuum and Cryogenics, 2022, 28(1): 39-47(in Chinese). doi: 10.3969/j.issn.1006-7086.2022.01.005
    [23] 鹿畅, 梁学明, 夏广庆, 等. 环型离子推力器放电机理研究进展[J]. 固体火箭技术, 2021, 44(2): 215-222.

    LU C, LIANG X M, XIA G Q, et al. Research progress on discharge mechanism of annular ion thruster[J]. Journal of Solid Rocket Technology, 2021, 44(2): 215-222(in Chinese).
    [24] DAVID H M. Factors affecting the beam divergence of a T5 ion engine: IEPC-1997-095 [R]. Washington, D. C. : IEPC, 1997: 1-8.
    [25] BROPHY J R, WILBUR P J. Baffle aperture design model for electron bombardment thrusters[J]. Journal of Spacecraft and Rockets, 1982, 19(6): 586-591. doi: 10.2514/3.62305
    [26] MILLIGAN D J, GABRIEL S B. Investigation of the baffle annulus region of the UK25 ion thruster: AIAA-1999-2440 [R]. Reston: AIAA, 1999.
    [27] RAWLIN V, WILLIAMS G, PIÑERO L. Status of ion engine development for high power, high specific impulse missions: IEPC-2001-096 [R]. Washington, D. C.: IEPC, 2001: 1-17.
    [28] BROPHY J R. Ion engine service life validation by analysis and testing: AIAA-1996-2715[R]. Reston: AIAA, 1996.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  26
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 录用日期:  2021-11-27
  • 网络出版日期:  2022-01-12
  • 整期出版日期:  2023-08-31

目录

    /

    返回文章
    返回
    常见问答