-
摘要:
为满足在役战机隐身性能的快速检测需求,提出了一种基于垂直扫描、方位旋转同步运动的三维成像方法。成像系统主要由射频收发设备、收发天线对、竖直方向导轨、转台和数据处理终端构成。天线发射频率步进信号时,对转台上的被测目标进行水平旋转,同时,收发天线对在垂直方向上扫描被测目标。以点目标组合为例,通过理论分析和仿真计算,确定该成像系统的参数配置,比较不同参数配置下系统的三维成像性能。仿真结果表明:采用垂直扫描、方位旋转同步运动方法能够实现三维成像,该方法与经典圆柱面扫描方法相比,扫描时间可缩短92%,同时保持11 dB峰值旁瓣比率。所提方法具有测试效率高、系统搭建简单、易于调节的特点,为服役阶段的隐身飞机散射源诊断提供了一种有效的测量方法选择。
Abstract:In order to meet the requirements of rapid detection of stealth performance of in-service fighters, a scattering measurement method based on vertical scanning and azimuth rotation synchronous motion is proposed. The vertical guide rail, turntable, data processing terminal, RF transceiver equipment, and transceiver antenna pair make up the majority of the measuring system. When the antenna transmits the frequency step signal, it horizontally rotates the target to be measured on the turntable. At the same time, the transceiver antenna pair scans the target to be measured in the vertical direction. Taking the combination of point targets as an example, the parameter configuration of the measurement system is determined through theoretical analysis and simulation calculation, and the three-dimensional imaging performance of the system under different parameter configurations is compared. The simulation results show that the scattering measurement method of vertical scanning and azimuth rotation synchronous motion can realize three-dimensional imaging. When compared to the traditional cylindrical scanning approach, there is a 92% reduction in measurement time while maintaining the peak sidelobe ratio of 12 dB. The measurement method has the characteristics of high test efficiency, simple system construction and easy adjustment. It provides an effective measurement method for the scattering source diagnosis of stealth aircraft in service.
-
表 1 不同方式扫描结果对比
Table 1. Comparison of scanning results in different ways
扫描方式 采样时间/min 可分辨最小
动态范围/dB缩短时间
比例/%满阵柱面口径扫描
(转台角度间隔0.16°)217.08 13 扫描旋转同步运动
(转台角度间隔0.13°)4.3 6 98.02 扫描旋转同步运动
(转台角度间隔0.033°)17.2 11 92.08 -
[1] 阮颖铮. 雷达截面与隐身技术[M]. 北京: 国防工业出版社, 1998.RUAN Y Z. Radar cross section and stealth technology[M]. Beijing: National Defense Industry Press, 1998(in Chinese). [2] 曾天翔, 张宝珍. 军用飞机维修面临的挑战与发展前景[J]. 航空维修与工程, 2005(1): 28-31.ZENG T X, ZHANG B Z. Challenges and development prospects of military aircraft maintenance[J]. Aviation Maintenance & Engineering, 2005(1): 28-31(in Chinese). [3] 张澎, 车理论, 马永利, 等. 国外隐身飞机 RCS 近场测试技术[J]. 飞机设计, 2019, 39(4): 15-19.ZHANG P, CHE L L, MA Y L, et al. Foreign RCS near-field measurement technology for stealth aircraft[J]. Aircraft Design, 2019, 39(4): 15-19(in Chinese). [4] TICE T E. An overview of radar cross section measurement techniques[J]. IEEE Transactions on Instrumentation and Measurement, 1990, 39(1): 205-207. doi: 10.1109/19.50445 [5] 陈秦, 魏薇, 肖冰, 等. 国外武器装备RCS测试外场研究现状[J]. 表面技术, 2012, 41(5): 129-132.CHEN Q, WEI W, XIAO B, et al. Research status of outdoor RCS measurement range for weapon and equipment abroad[J]. Surface Technology, 2012, 41(5): 129-132(in Chinese). [6] 张福顺, 焦永昌, 马金平, 等. 辐射、散射近场测量及近场成像技术的研究进展[J]. 西安电子科技大学学报, 1999, 26(5): 651-656.ZHANG F S, JIAO Y C, MA J P, et al. The state of the art of near field techniques for radiation, targets scattering measurements and object imaging[J]. Journal of Xidian University, 1999, 26(5): 651-656(in Chinese). [7] CAO C Q, ZENG X D, FAN Z J, et al. Measurement and analysis of aircraft and vehicle LRCS in outfield test[C]//Proceedings of the Photoelectronic Technology. Bellingham: SPIE, 2015, 9522: 472-475. [8] 宋云俏, 洪韬, 姚觐, 等. 一种基于平面扫描结构的三维成像降采样快速扫描方法: CN105911533A[P]. 2018-04-03.SONG Y Q, HONG T, YAO J, et al. Three-dimensional imaging down sampling quick scanning method based on plane scanning structure: CN105911533A[P]. 2018-04-03(in Chinese). [9] 邢曙光, 吕晓德, 丁赤飚. 基于柱面扫描近场成像的RCS测量方法研究[J]. 雷达学报, 2015, 4(2): 172-177.XING S G, LV X D, DING C B. Research on radar cross section measurement based on near-field imaging of cylindrical scanning[J]. Journal of Radars, 2015, 4(2): 172-177(in Chinese). [10] 吕晓德, 邢曙光, 丁赤飚, 等. 基于柱面扫描三维近场成像的反向散射截面测量方法: CN104215953A[P]. 2017-02-15.LYU X D, XING S G, DING C B, et al. Backscatter cross section measurement method based on cylinder scanning three-dimensional near-field imaging: CN104215953A[P]. 2017-02-15(in Chinese). [11] AMINEH R K, NIKOLOVA N K, RAVAN M. Real-time three-dimensional imaging of dielectric bodies using microwave/millimeter-wave holography[M]. New York: Wiley, 2019. [12] 郝欣. 双站柱面近场散射测量方法研究[D]. 西安: 西安电子科技大学, 2017.HAO X. Study of bistatic cylindrical near-field scattering measurement method[D]. Xi’an: Xidian University, 2017(in Chinese). [13] BURROWS M L. Two-dimensional ESPRIT with tracking for radar imaging and feature extraction[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(2): 524-532. doi: 10.1109/TAP.2003.822411 [14] YANG J Y, YANG X B, DING Y Y, et al. High-resolution 35 GHz coherent LFM-CW radar for two-dimensional imaging[J]. Journal of Electronics (China), 1997, 14(2): 148-153. doi: 10.1007/s11767-997-1007-3 [15] YANG S T, LING H. Application of compressive sensing to two-dimensional radar imaging using a frequency-scanned microstrip leaky wave antenna[J]. Journal of Electromagnetic Engineering and Science, 2017, 17(3): 113-119. doi: 10.5515/JKIEES.2017.17.3.113 [16] GU F F, ZHANG Q, LOU H , et al. Two-dimensional sparse synthetic aperture radar imaging method with stepped-frequency waveform[J]. Journal of Applied Remote Sensing, 2015, 9(1): 096099. [17] ZHAO J C, DONG Z Q. Efficient sampling schemes for 3-D ISAR imaging of rotating objects in compact antenna test range[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 650-653. doi: 10.1109/LAWP.2015.2466107 [18] 胡楚锋, 周洲, 李南京, 等. 一种时域平面扫描三维成像算法研究[J]. 仪器仪表学报, 2012, 33(4): 764-768 .HU C F, ZHOU Z, LI N J, et al. Study on three-dimensional imaging time-domain algorithm based on planar scanning mode[J]. Chinese Journal of Scientific Instrument, 2012, 33(4): 764-768(in Chinese). [19] ZHAO J C, ZHANG M Y. Performance 3-D ISAR imaging in compact antenna test range via compressed sensing[C]//Proceedings of the IEEE International Conference on Communication Technology. Piscataway: IEEE Press, 2018: 736-740. [20] 孟祥欣, 薛明华, 王振荣. 微波三维成像离散点目标回波数据模拟[J]. 电子测量技术, 2007, 30(8): 37-40.MENG X X, XUE M H, WANG Z R. Microwave 3-D imaging echo data simulation for discrete targets[J]. Electronic Measurement Technology, 2007, 30(8): 37-40(in Chinese). -