留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双向耦合的燃烧室与冷却通道的传热研究

赵超凡 董昊 朱剑琴 程泽源 戎毅

赵超凡,董昊,朱剑琴,等. 基于双向耦合的燃烧室与冷却通道的传热研究[J]. 北京航空航天大学学报,2024,50(3):962-974 doi: 10.13700/j.bh.1001-5965.2022.0276
引用本文: 赵超凡,董昊,朱剑琴,等. 基于双向耦合的燃烧室与冷却通道的传热研究[J]. 北京航空航天大学学报,2024,50(3):962-974 doi: 10.13700/j.bh.1001-5965.2022.0276
ZHAO C F,DONG H,ZHU J Q,et al. Study on heat transfer of combustor and regenerative cooling channel based on two-way coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):962-974 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0276
Citation: ZHAO C F,DONG H,ZHU J Q,et al. Study on heat transfer of combustor and regenerative cooling channel based on two-way coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):962-974 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0276

基于双向耦合的燃烧室与冷却通道的传热研究

doi: 10.13700/j.bh.1001-5965.2022.0276
基金项目: 国家自然科学基金(51876005,52122604);中央高校基本科研业务费专项资金(501LKQB2021104005,501LKQB2021146009)
详细信息
    通讯作者:

    E-mail:chengzeyuan@buaa.edu.cn

  • 中图分类号: V221+.3

Study on heat transfer of combustor and regenerative cooling channel based on two-way coupling

Funds: National Natural Science Foundation of China (51876005,52122604); The Fundamental Research Funds for the Central Universities (501LKQB2021104005,501LKQB2021146009)
More Information
  • 摘要:

    为研究超燃冲压发动机燃烧室与再生冷却通道的耦合传热特性,采用双向弱耦合迭代计算方法,研究燃烧室和冷却通道的特征参数对耦合传热特性的影响规律。结果表明:当量比的增加导致燃烧反应区域和壁面高温区域后移,当量比增大至0.75时,部分壁面高温区后移至超出燃烧段范围,在燃烧室的当量比设计时需考虑冷却通道范围的限制;喷射角度的增大会提高燃烧段壁面平均温度,喷射角度由30°增大到75°时,冷却通道出口裂解率由8%增长到11%;增大冷却剂的工作压力和流量能增强冷却剂的吸热能力,降低燃烧室内壁面温度,最大下降幅度约200 K。

     

  • 图 1  Hyshot超燃冲压发动机燃烧室结构示意图[13]

    Figure 1.  Schematic diagram of Hyshot scramjet combustor structure[13]

    图 2  再生冷却通道结构示意图

    Figure 2.  Schematic diagram of regenerative cooling channel structure

    图 3  正癸烷比热容计算结果和NIST[18]数据库对比

    Figure 3.  Comparison of calculated specific heat of N-decane with NIST[18] database

    图 4  耦合换热结构简化模型示意图

    Figure 4.  Schematic diagram of simplified model of coupled heat transfer structure

    图 5  燃烧室网格

    Figure 5.  Mesh of combustor

    图 6  冷却通道网格

    Figure 6.  Mesh of cooling channel

    图 7  网格无关解验证

    Figure 7.  Grid independence verification

    图 8  平均流速和正癸烷质量分数计算结果与实验结果

    Figure 8.  Calculated results of average velocity of flow and mass fraction of N-decane with experimental data

    图 9  静压计算结果与实验结果

    Figure 9.  Calculated results of static pressure with experimental data

    图 10  气相燃烧温度计算结果与实验结果

    Figure 10.  Calculated results of temperature with experimental data for gaseous combustion

    图 11  壁面温度和热流密度随迭代次数变化

    Figure 11.  Temperature and heat flux of walls vary with number of iterations

    图 12  冷却通道中心截面正癸烷质量分数

    Figure 12.  Mass fraction of N-decane of central section in cooling channel

    图 13  不同当量比下正癸烷质量分数随剖面位置变化

    Figure 13.  Mass fraction of N-decane varies with position of section under different equivalence ratios

    图 14  燃烧室中心截面静压和密度分布

    Figure 14.  Static pressure and density distribution in central section of combustor

    图 15  不同当量比下燃烧段内壁面温度分布

    Figure 15.  Temperature distribution of combustion section inner wall with different equivalence ratios

    图 16  不同当量比冷却通道中心截面正癸烷质量分数分布

    Figure 16.  Mass fraction distribution of N-decane of central section in cooling channel with different equivalence ratios

    图 17  不同当量比下正癸烷截面平均质量分数分布

    Figure 17.  Average mass fraction distribution of N-decane with different equivalence ratios

    图 18  不同喷射角度下正癸烷质量分数随剖面位置变化

    Figure 18.  Mass fraction of N-decane varies with position of section under different spray angles

    图 19  不同喷射角下燃烧段内壁面温度

    Figure 19.  Temperature of inner wall surface in combustion section with different injection angles

    图 20  不同喷射角下正癸烷截面平均质量分数

    Figure 20.  Average mass fraction of N-decane cross-section with different injection angles

    图 21  不同压力下燃烧室和冷却通道内壁面平均温度及热流密度

    Figure 21.  Average temperature and heat flux density of combustor and cooling channel inner wall under different pressures

    图 22  不同压力下正癸烷导温系数随温度变化

    Figure 22.  Variable temperature dependence of thermal diffusivity of N-decane under different pressures

    图 23  不同压力下正癸烷截面平均质量分数分布

    Figure 23.  Average mass fraction distribution of N-decane under different pressures

    图 24  不同压力下燃烧室沿程截面平均总温相对变化

    Figure 24.  Variation of average total temperature along cross-section of combustor under different pressures

    图 25  燃烧室和冷却通道内壁面平均温度及热流密度随冷却流量变化

    Figure 25.  Average temperature and heat flux of combustor and cooling channel inner wall varies with coolant flow rate

    图 26  不同冷却流量下冷却通道沿程平均温度分布

    Figure 26.  Average temperature distribution along cooling channel under different coolant flow rates

    图 27  不同冷却流量下正癸烷平均质量分数

    Figure 27.  Average mass fraction of N-decane distribution with different coolant flow rates

    图 28  不同冷却流量下燃烧室沿程平均总温相对变化

    Figure 28.  Variation of average total temperature along combustor under different coolant flow rates

    表  1  燃烧室和冷却通道边界条件

    Table  1.   Boundary conditions of combustor and cooling channel

    工况 当量比 喷射角度/(°) 冷却通道压力/MPa 冷却剂流量/(kg·s−1)
    1 0.15,0.35,0.55,0.75 90 3 0.045
    2 0.15 30,45,60,75 3 0.045
    3 0.7 90 3,4,5,6 0.045
    4 1 90 3 0.035,0.045,0.055,0.065
    下载: 导出CSV

    表  2  冷却通道出口温度和正癸烷质量分数

    Table  2.   The temperature and N-decane mass fraction of cooling channel outlet

    耦合方式 平均温度/K 正癸烷质量分数
    单向耦合 544.93 0.919 8
    双向耦合 558.69 0.891 3
    下载: 导出CSV
  • [1] 张丽静, 刘东升, 于存贵, 等. 高超声速飞行器[J]. 航空兵器, 2010, 17(2): 13-16. doi: 10.3969/j.issn.1673-5048.2010.02.003

    ZHANG L J, LIU D S, YU C G, et al. Hypersonic aircraft[J]. Aero Weaponry, 2010, 17(2): 13-16(in Chinese). doi: 10.3969/j.issn.1673-5048.2010.02.003
    [2] 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6): 716-739. doi: 10.3321/j.issn:1000-0992.2009.06.011

    WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6): 716-739(in Chinese). doi: 10.3321/j.issn:1000-0992.2009.06.011
    [3] 刘世俭, 刘兴洲. 超燃冲压发动机可贮存碳氢燃料再生主动冷却换热过程分析[J]. 飞航导弹, 2009(3): 48-52.

    LIU S J, LIU X Z. Analysis of regenerative active cooling heat transfer process of storable hydrocarbon fuel in scramjet[J]. Winged Missiles Journal, 2009(3): 48-52(in Chinese).
    [4] 张泰昌, 王晶, 范学军. 主动冷却超燃冲压发动机燃烧室内流道设计[C]//高超声速专题研讨会暨第五届全国高超声速科学技术会议论文集. 北京: 中国力学学会, 2012.

    ZHANG T C, WANG J, FAN X J. Design of flow passage in combustion chamber of active cooling scramjet[C]//Proceedings of Hypersonic Symposium and the Fifth National Hypersonic Science and Technology Conference. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2012(in Chinese).
    [5] 李俊红, 潘宏禄, 沈清, 等. 超燃冲压发动机燃烧室的燃烧特性[J]. 航空动力学报, 2014, 29(1): 14-22.

    LI J H, PAN H L, SHEN Q, et al. Combustion characteristics of scramjet combustor[J]. Journal of Aerospace Power, 2014, 29(1): 14-22(in Chinese).
    [6] 纪鹏飞, 徐旭, 陈兵, 等. 双支板超燃冲压发动机燃烧特性研究[J]. 北京航空航天大学学报, 2017, 43(2): 366-374.

    JI P F, XU X, CHEN B, et al. Combustion performance investigation of a dual-struts scramjet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 366-374(in Chinese).
    [7] FROELICH A, IMMICH H, LEBAIL F, et al. Three-dimensional flow analysis in a rocket engine coolant channel of high depth/width ratio[C]//Proceedings of the 27th Joint Propulsion Conference. Reston: AIAA, 1991.
    [8] 牛禄. 液体火箭发动机层板再生冷却技术研究[D]. 上海: 上海交通大学, 2002: 84-102.

    NIU L. Study on regenerative cooling technology of liquid rocket engine laminate[D]. Shanghai: Shanghai Jiao Tong University, 2002: 84-102(in Chinese).
    [9] 李军伟, 刘宇. 一种计算再生冷却推力室温度场的方法[J]. 航空动力学报, 2004, 19(4): 550-556. doi: 10.3969/j.issn.1000-8055.2004.04.022

    LI J W, LIU Y. Method of computing temperature field in regeneratively-cooled thrust chamber[J]. Journal of Aerospace Power, 2004, 19(4): 550-556(in Chinese). doi: 10.3969/j.issn.1000-8055.2004.04.022
    [10] LU Y, WANG X Z, LI L, et al. Development and preliminary validation of a thermal analysis method for hydrocarbon regenerative-cooled supersonic combustor[C]//Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2015: AIAA2015-355.
    [11] MA J C, CHANG J T, ZHANG J L, et al. Control-oriented unsteady one-dimensional model for a hydrocarbon regeneratively-cooled scramjet engine[J]. Aerospace Science and Technology, 2019, 85: 158-170. doi: 10.1016/j.ast.2018.12.012
    [12] 王新竹, 张泰昌, 陆阳, 等. 主动冷却燃烧室燃烧与传热耦合过程迭代分析设计方法[J]. 推进技术, 2014, 35(2): 213-219.

    WANG X Z, ZHANG T C, LU Y, et al. An iterative analysis and design method for study of coupling processes of combustion and heat transfer in actively-cooled scramjet combustor[J]. Journal of Propulsion Technology, 2014, 35(2): 213-219(in Chinese).
    [13] ODAM J. Scramjet experiments using radical farming[D]. Brisbane: The University of Queensland, 2004: 5-10.
    [14] WARD T A, ERVIN J S, STRIEBICH R C, et al. Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J]. Journal of Propulsion and Power, 2004, 20(3): 394-402. doi: 10.2514/1.10380
    [15] WARD T A, ERVIN J S, ZABARNICK S, et al. Pressure effects on flowing mildly-cracked n-decane[J]. Journal of Propulsion and Power, 2005, 21(2): 344-355. doi: 10.2514/1.6863
    [16] YOUNGLOVE B A, ELY J F. Thermophysical properties of fluids. II. Methane, ethane, propane, isobutane, and normal butane[J]. Journal of Physical and Chemical Reference Data, 1987, 16(4): 577-798. doi: 10.1063/1.555785
    [17] MILLAT J, DYMOND J H, NIETO DE CASTRO C A. Transport properties of fluids: Their correlation, prediction and estimation[M]. Cambridge: Cambridge University Press, 1996: 325-430.
    [18] Huber M L. NIST thermophysical properties of hydrocarbon mixtures database (SUPERTRAPP)[EB/OL] . (2003-01-11) [2022-01-15].https://webbook.nist.gov/chemistry/form-ser/.
    [19] 戎毅, 朱剑琴, 戴武昊, 等. 超燃冲压发动机冷却通道与燃烧室耦合传热数值研究[J]. 推进技术, 2022, 43(4): 168-177.

    RONG Y, ZHU J Q, DAI W H, et al. Numerical study on coupled heat transfer between cooling channel and combustor of scramjet[J]. Journal of Propulsion Technology, 2022, 43(4): 168-177(in Chinese).
    [20] 吴坤, 范学军. 超声速燃烧数值模拟中复杂化学反应的建模方法[J]. 空气动力学学报, 2020, 38(3): 552-576.

    WU K, FAN X J. Modeling methodology for complex chemical mechanism involved in supersonic combustion simulation[J]. Acta Aerodynamica Sinica, 2020, 38(3): 552-576(in Chinese).
    [21] SABELNIKOV V, FUREBY C. LES combustion modeling for high Re flames using a multi-phase analogy[J]. Combustion and Flame, 2013, 160(1): 83-96. doi: 10.1016/j.combustflame.2012.09.008
    [22] 范学军, 俞刚. 超临界煤油超声速燃烧特性实验[J]. 推进技术, 2006, 27(1): 79-82.

    FAN X J, YU G. Experiments on supersonic combustion of supercritical kerosene[J]. Journal of Propulsion Technology, 2006, 27(1): 79-82(in Chinese).
    [23] ALFF F, BRUMMUND U, CLAUSS W, et al. Experimental investigation of the combustion process in a supersonic combustion ramjet (SCRAMJET) combustion chamber[C]//Proceedings of the Annual Conference, German Aerospace Congress. Erlangen: DGLR, 1994.
    [24] JACHIMOWSKI C J. Analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion: NASA-TP-2791 [R]. Washton, D. C. : NASA , 1988, 2791-2807.
    [25] GNIELINSKI V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. Engineering, 1975, 41(1): 8-16.
    [26] 李锋, 吕付国, 罗卫东, 等. 超声速气流中液体横向射流的破碎特性[J]. 北京航空航天大学学报, 2015, 41(12): 2356-2362.

    LI F, LYU F G, LUO W D, et al. Breakup characteristics of liquid jet in supersonic cross flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12): 2356-2362(in Chinese).
  • 加载中
图(28) / 表(2)
计量
  • 文章访问数:  670
  • HTML全文浏览量:  92
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 录用日期:  2022-08-26
  • 网络出版日期:  2022-09-15
  • 整期出版日期:  2024-03-27

目录

    /

    返回文章
    返回
    常见问答