留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚临界雷诺数下串列双波浪锥柱绕流数值模拟

邹琳 吴伟男 刘健 柳迪伟 王家辉

邹琳,吴伟男,刘健,等. 亚临界雷诺数下串列双波浪锥柱绕流数值模拟[J]. 北京航空航天大学学报,2024,50(3):706-715 doi: 10.13700/j.bh.1001-5965.2022.0285
引用本文: 邹琳,吴伟男,刘健,等. 亚临界雷诺数下串列双波浪锥柱绕流数值模拟[J]. 北京航空航天大学学报,2024,50(3):706-715 doi: 10.13700/j.bh.1001-5965.2022.0285
ZOU L,WU W N,LIU J,et al. Numerical simulation of flow around two tandem wavy conical cylinders at subcritical Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):706-715 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0285
Citation: ZOU L,WU W N,LIU J,et al. Numerical simulation of flow around two tandem wavy conical cylinders at subcritical Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):706-715 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0285

亚临界雷诺数下串列双波浪锥柱绕流数值模拟

doi: 10.13700/j.bh.1001-5965.2022.0285
基金项目: 国家自然科学基金(11972268)
详细信息
    通讯作者:

    E-mail:l.zou@163.com

  • 中图分类号: O357.1

Numerical simulation of flow around two tandem wavy conical cylinders at subcritical Reynolds number

Funds: National Natural Science Foundation of China (11972268)
More Information
  • 摘要:

    针对风力俘能结构布局问题,基于大涡模拟(LES)方法,在亚临界雷诺数下(Re = 3900)研究有限长串列双波浪锥柱的升阻力特性及其流动结构随间距比的变化规律。结果表明:由于上游波浪锥柱的影响,下游波浪锥柱的脉动升力系数大幅增大,当间距比为 3时,表面时均压力系数分布形式呈反向分布;随间距比增加,上游波浪锥柱尾流充分发展,并产生大量肋状涡撞击在下游波浪锥柱表面,下游波浪锥柱产生大的脉动升力,相较于单直圆柱提升约15.3倍,阻力系数降低约0.172。所得结果可为风力俘能结构布局提供有益参考。

     

  • 图 1  波浪锥柱外形示意

    Figure 1.  Schematic diagram of wavy conical cylinder shape

    图 2  计算域及网格划分

    Figure 2.  Computational domain and grid division

    图 3  串列双波浪锥柱烟线实验及计算模型和实验结果对比

    Figure 3.  Comparison of experimental results and computational models for smokeline of two tandem wavy conical cylinder

    图 4  串列双波浪锥柱升阻力系数

    Figure 4.  Lift-drag coefficients of two tandem wavy conical cylinders

    图 5  串列双波浪锥柱不同间距比下表面时均压力系数云图

    Figure 5.  Cloud maps of time-averaged pressure coefficient on surface of two tandem wavy conical cylinders with different spacing ratios

    图 6  串列双波浪锥柱不同间距比下时均流线图

    Figure 6.  Time-averaged streamline diagrams of two tandem wavy conical cylinders with different spacing ratios

    图 7  串列双波浪锥柱瞬时涡结构(Q = 5×104

    Figure 7.  Instantaneous vortex structure of two tandem wavy conical cylinders (Q = 5×104)

    图 8  串列双波浪锥柱各截面涡量图

    Figure 8.  Vorticity diagrams of each section of two tandem wavy conical cylinders

    表  1  有限长直圆柱计算验证

    Table  1.   Calculation verification of finite-length straight cylinder

    数据来源 网格数量 圆周节点数 亚格子尺度模型 Δy/Dm Δt* Nfe Re H/Dm Cdmean Clrms
    Case1 1 177 434 120 Smagorinsky-Lilly 0.001 0.001 2 3 900 7.0 0.749 0.0150
    Case2 2 998 158 160 Smagorinsky-Lilly 0.001 0.001 2 3 900 7.0 0.757 0.0122
    Case3 5 517 295 200 Smagorinsky-Lilly 0.001 0.001 2 3 900 7.0 0.757 0.0123
    Case4 2 859 560 160 Smagorinsky-Lilly 0.002 0.001 2 3 900 7.0 0.743 0.0112
    Case5 3 126 920 160 Smagorinsky-Lilly 0.0005 0.001 2 3 900 7.0 0.756 0.0122
    Case6 2 998 158 160 Smagorinsky-Lilly 0.001 0.0005 2 3 900 7.0 0.756 0.0124
    Case7 2 998 158 160 Smagorinsky-Lilly 0.001 0.002 2 3 900 7.0 0.741 0.0115
    Case8 2 998 158 160 WALE 0.001 0.001 2 3 900 7.0 0.762 0.0120
    Case9 2 998 158 160 WMLES 0.001 0.001 2 3 900 7.0 0.741 0.0115
    Case10 2 998 158 160 WMLES S-Omega 0.001 0.001 2 3 900 7.0 0.765 0.0128
    Case11 2 998 158 160 Kinetic-Energy Transport 0.001 0.001 2 3 900 7.0 0.770 0.0116
    文献[15] 2 464 056 Smagorinsky-Lilly 0.0005 1 3 900 1.5 0.755 0.050
    文献[16] 2 88 000 5.0 0.742
     注:Cdmean为时均阻力系数,Clrms为脉动升力系数。
    下载: 导出CSV
  • [1] NAUDASCHER E, ROCKWELL D. Flow-induced vibrations: An engineering guide[M]. Boca Raton: CPC Press, 1994.
    [2] WANG J, ZHAO W, SU Z, et al. Enhancing vortex-induced vibrations of a cylinder with rod attachments for hydrokinetic power generation[J]. Mechanical Systems and Signal Processing, 2020, 145: 106912. doi: 10.1016/j.ymssp.2020.106912
    [3] MEI Y F, ZHENG C, AUBRY N, et al. Active control for enhancing vortex induced vibration of a circular cylinder based on deep reinforcement learning[J]. Physics of Fluids, 2021, 33(10): 103604. doi: 10.1063/5.0063988
    [4] 李椿萱, 彭少波, 吴子牛. 附属小圆柱对主圆柱绕流影响的数值模拟[J]. 北京航空航天大学学报, 2003, 29(11): 951-958.

    LI C X, PENG S B, WU Z N. Numerical study of flow around a main cylinder by controlled satellite cylinders[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 951-958(in Chinese).
    [5] 周潇, 胡烨, 王晋军. 前置隔板对圆柱绕流影响的实验分析[J]. 北京航空航天大学学报, 2016, 42(1): 172-179.

    ZHOU X, HU Y, WANG J J. Experimental analysis on flow past circular cylinder attached to frontal splitter plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 172-179(in Chinese).
    [6] LAM K, LIN Y F. Large eddy simulation of flow around wavy cylinders at a subcritical Reynolds number[J]. International Journal of Heat and Fluid Flow, 2008, 29(4): 1071-1088. doi: 10.1016/j.ijheatfluidflow.2008.01.006
    [7] 邹琳, 秦傲, 杨耀宗, 等. 波浪锥型圆柱流固耦合振动机理研究[J]. 振动与冲击, 2022, 41(3): 18-26.

    ZOU L, QIN A, YANG Y Z, et al. Fluid-structure coupled vibration mechanism of wave conical cylinder[J]. Journal of Vibration and Shock, 2022, 41(3): 18-26(in Chinese).
    [8] HARIMI I, SAGHAFIAN M. Numerical simulation of fluid flow and forced convection heat transfer from tandem circular cylinders using overset grid method[J]. Journal of Fluids and Structures, 2012, 28: 309-327. doi: 10.1016/j.jfluidstructs.2011.12.006
    [9] HU X F, ZHANG X S, YOU Y X. On the flow around two circular cylinders in tandem arrangement at high Reynolds numbers[J]. Ocean Engineering, 2019, 189: 106301. doi: 10.1016/j.oceaneng.2019.106301
    [10] PAPAIOANNOU G V, YUE D K P, TRIANTAFYLLOU M S, et al. Three-dimensionality effects in flow around two tandem cylinders[J]. Journal of Fluid Mechanics, 2006, 558: 387-413. doi: 10.1017/S0022112006000139
    [11] 涂佳黄, 曹波, 谭潇玲, 等. 串列双圆柱体绕流特性与互扰效应研究[J]. 应用力学学报, 2019, 36(4): 869-875.

    TU J H, CAO B, TAN X L, et al. Study on flow characteristics and mutual interference effect around tandem double cylinders[J]. Chinese Journal of Applied Mechanics, 2019, 36(4): 869-875(in Chinese).
    [12] KUMAR D, SOURAV K, SEN S. Steady separated flow around a pair of identical square cylinders in tandem array at low Reynolds numbers[J]. Computers & Fluids, 2019, 191: 104244.
    [13] DERAKHSHANDEH J F, GHARBIA Y, JI C. Numerical investigations on flow over tandem grooved cylinders[J]. Ocean Engineering, 2022, 251: 111160. doi: 10.1016/j.oceaneng.2022.111160
    [14] 王裕夫, 陶国权, 刘东旭, 等. 基于大涡模拟的平流层浮空器气动特性分析[J]. 北京航空航天大学学报, 2015, 41(4): 616-623.

    WANG Y F, TAO G Q, LIU D X, et al. Analysis of stratospheric lighter-than-air vehicle’s aerodynamic characteristics based on large eddy simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 616-623(in Chinese).
    [15] ZHANG H, YANG J, XIAO L, et al. Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re = 3900 [J]. Journal of Hydrodynamics, 2015, 27(2): 195-203. doi: 10.1016/S1001-6058(15)60472-3
    [16] ZDRAVKOVICH M M, BRAND V P, MATHEW G, et al. Flow past short circular cylinders with two free ends[J]. Journal of Fluid Mechanics, 1989, 203: 557-575. doi: 10.1017/S002211208900159X
    [17] BREUER M. Large eddy simulation of the subcritical flow past a circular cylinder: Numerical and modeling aspects[J]. International Journal for Numerical Methods in Fluids, 1998, 28(9): 1281-1302. doi: 10.1002/(SICI)1097-0363(19981215)28:9<1281::AID-FLD759>3.0.CO;2-#
    [18] 刘小兵, 姜会民, 王世博, 等. 串列三圆柱的脉动气动力特性试验研究[J]. 振动与冲击, 2021, 40(13): 96-103. doi: 10.13465/j.cnki.jvs.2021.13.013

    LIU X B, JIANG H M, WANG S B, et al. Tests for fluctuating aerodynamic force characteristics of three cylinders in series[J]. Journal of Vibration and Shock, 2021, 40(13): 96-103(in Chinese). doi: 10.13465/j.cnki.jvs.2021.13.013
    [19] 赵桂欣, 桂洪斌, 王晓聪. 有限长波浪形圆柱绕流数值模拟[J]. 哈尔滨工业大学学报, 2021, 53(6): 163-170.

    ZHAO G X, GUI H B, WANG X C. Numerical simulation of flow around finite-length wavy cylinders[J]. Journal of Harbin Institude of Technology, 2021, 53(6): 163-170(in Chinese).
    [20] 赵斌娟, 谢昀彤, 廖文言, 等. 第二代涡识别方法在混流泵内部流场中的适用性分析[J]. 机械工程学报, 2020, 56(14): 216-223. doi: 10.3901/JME.2020.14.216

    ZHAO B J, XIE Y T, LIAO W Y, et al. Adaptability analysis of second generation vortex recognition method in internal flow field of mixed-flow pumps[J]. Journal of Mechanical Engineering, 2020, 56(14): 216-223(in Chinese). doi: 10.3901/JME.2020.14.216
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  81
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 录用日期:  2022-08-16
  • 网络出版日期:  2022-08-19
  • 整期出版日期:  2024-03-27

目录

    /

    返回文章
    返回
    常见问答