留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载GNSS-R检测太湖水华可行性分析

张云 王雨 周绍辉 孟婉婷 韩彦岭 杨树瑚

张云,王雨,周绍辉,等. 星载GNSS-R检测太湖水华可行性分析[J]. 北京航空航天大学学报,2024,50(3):695-705 doi: 10.13700/j.bh.1001-5965.2022.0298
引用本文: 张云,王雨,周绍辉,等. 星载GNSS-R检测太湖水华可行性分析[J]. 北京航空航天大学学报,2024,50(3):695-705 doi: 10.13700/j.bh.1001-5965.2022.0298
ZHANG Y,WANG Y,ZHOU S H,et al. Analysis on feasibility of detecting water blooms in Taihu Lake with spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):695-705 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0298
Citation: ZHANG Y,WANG Y,ZHOU S H,et al. Analysis on feasibility of detecting water blooms in Taihu Lake with spaceborne GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):695-705 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0298

星载GNSS-R检测太湖水华可行性分析

doi: 10.13700/j.bh.1001-5965.2022.0298
基金项目: 国家自然科学基金(41871325,42176175);国家重点研发计划(2019YFD0900805)
详细信息
    通讯作者:

    E-mail:shyang@shou.edu.cn

  • 中图分类号: P715.6

Analysis on feasibility of detecting water blooms in Taihu Lake with spaceborne GNSS-R

Funds: National Natural Science Foundation of China (41871325,42176175); National Key R & D Program of China (2019YFD0900805)
More Information
  • 摘要:

    星载全球导航卫星系统反射信号(GNSS-R)属于被动遥感技术,具有数据重访周期高、全天时、全天候、信号源丰富等优势。基于此,研究星载GNSS-R检测太湖水华的可行性。星载GNSS-R可以有效检测反射面的粗糙程度,通过使用相干反射表征反射面的粗糙度,研究不同风速区间内相干反射与蓝藻水华的关系。利用2020年4—8月美国气旋全球导航卫星系统(CYGNSS)数据,计算CYGNSS镜面反射点的时延多普勒图(DDM)功率比。以“哨兵-3”卫星水色遥感仪器(OLCI) 影像最大特征峰高度(MPH)算法反演出的太湖叶绿素浓度作为参照,与欧洲中期天气预报中心(ECMWF)的风速产品进行时空间线性匹配,分析发现,在1~2.5 m/s风速区间内,叶绿素浓度达到0.1 mg/L以上时,极易引起镜面反射点发生相干反射,且功率比与叶绿素浓度的相关系数为0.84,具有良好的相关性。实验结果证明了利用星载GNSS-R的功率比及相关特性实现太湖水华检测的可行性。

     

  • 图 1  时延多普勒单元与反散射面之间的关系

    Figure 1.  Relationship between delayed Doppler cells and backscattering surfaces

    图 2  反射面粗糙度与电磁波散射的关系

    Figure 2.  Relationship between reflection surface roughness and electromagnetic scattering

    图 3  DDM峰值功率值与风速的关系

    Figure 3.  Relationship between DDM peak power and wind speed

    图 4  CYGNSS筛选范围(紫色区域)

    Figure 4.  CYGNSS filter range (purple region)

    图 5  2020年6月30日“哨兵-3”卫星反演的太湖叶绿素浓度分布

    Figure 5.  Chlorophyll concentration distribution in Taihu Lake retrieved by “Sentinel-3” satellite on June 30, 2020

    图 6  2020年6月30日CYGNSS镜面反射点叶绿素浓度与风速匹配图

    Figure 6.  Matching diagram of chlorophyll concentration and wind speed at CYGNSS specular reflection point on June 30, 2020

    图 7  数据处理流程

    Figure 7.  Data processing flow

    图 8  2类DDM热噪声去除前后对比及多普勒频移等于0时的切片

    Figure 8.  Two types of DDM thermal noise before and after removal and slices when Doppler frequency is equal to 0

    图 9  2020年4月太湖区域风速与功率比、相干反射分布图

    Figure 9.  Wind speed to power ratio and coherent reflection distribution map in Taihu Lake area in April, 2020

    图 10  匹配后镜面反射点功率比、风速与叶绿素浓度相关图

    Figure 10.  Diagram of correlation of PR, wind speed and chlorophyll concentration after matching

    图 11  功率比、叶绿素浓度拟合结果(风速为1~2.5 m/s)

    Figure 11.  Fitting results of power ratio and chlorophyll concentration (wind speed is 1−2.5 m/s)

    图 12  功率比、叶绿素浓度拟合结果(风速为2.5~4 m/s)

    Figure 12.  Fitting results of power ratio and chlorophyll concentration (wind speed is 2.5−4 m/s)

    表  1  “哨兵-3”卫星光学影像与CYGNSS匹配后的数据量(风速≥1 m/s)

    Table  1.   Data volume of “Sentinel-3” satellite optical image after matching CYGNSS (wind speed ≥ 1 m/s)

    日期匹配前数据量匹配后数据量
    2020年4月20日88
    2020年4月28日99
    2020年4月29日1812
    2020年5月3日2321
    2020年5月13日1515
    2020年5月19日2114
    2020年6月30日3123
    2020年8月2日1111
    2020年8月25日77
    下载: 导出CSV

    表  2  不同风速区间的异常数据统计

    Table  2.   Statistical of abnormal data in different wind speed intervals

    风速区间/(m·s−1) 镜面反射点总数 异常数据数量
    1~2.5 36 2
    2.5~4 59 22
    >4 25 0
    下载: 导出CSV
  • [1] QIN B Q, ZHU G W, GAO G, et al. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management[J]. Environmental Management, 2010, 45(1): 105-112. doi: 10.1007/s00267-009-9393-6
    [2] 张虎军, 宋挺, 朱冰川, 等. 太湖蓝藻水华暴发程度年度预测[J]. 中国环境监测, 2022, 38(1): 157-164. doi: 10.19316/j.issn.1002-6002.2022.01.15

    ZHANG H J, SONG T, ZHU B C, et al. Annual forecast of the extent of cyanobacteria bloom in Taihu Lake[J]. Environmental Monitoring in China, 2022, 38(1): 157-164(in Chinese). doi: 10.19316/j.issn.1002-6002.2022.01.15
    [3] 周立国, 冯学智, 王春红, 等. 太湖蓝藻水华的MODIS卫星监测[J]. 湖泊科学, 2008, 20(2): 203-207. doi: 10.3321/j.issn:1003-5427.2008.02.011

    ZHOU L G, FENG X Z, WANG C H, et al. Monitoring cyanobacteria bloom based on MODIS data in Lake Taihu[J]. Journal of Lake Sciences, 2008, 20(2): 203-207(in Chinese). doi: 10.3321/j.issn:1003-5427.2008.02.011
    [4] 李亚春, 孙佳丽, 谢志清, 等. 基于MODIS植被指数的太湖蓝藻信息提取方法研究[J]. 气象科学, 2011, 31(6): 737-741.

    LI Y C, SUN J L, XIE Z Q, et al. Extraction methods of cyanobacteria bloom in Lake Tai based on MODIS vegetation index[J]. Journal of the Meteorological Sciences, 2011, 31(6): 737-741(in Chinese).
    [5] 马荣华, 孔繁翔, 段洪涛, 等. 基于卫星遥感的太湖蓝藻水华时空分布规律认识[J]. 湖泊科学, 2008, 20(6): 687-694. doi: 10.3321/j.issn:1003-5427.2008.06.001

    MA R H, KONG F X, DUAN H T, et al. Spatio-temporal distribution of cyanobacteria blooms based on satellite imageries in Lake Taihu, China[J]. Journal of Lake Sciences, 2008, 20(6): 687-694(in Chinese). doi: 10.3321/j.issn:1003-5427.2008.06.001
    [6] 李旭文, 张悦, 侍昊, 等. 基于哨兵-3A卫星OLCI数据的最大叶绿素指数在太湖蓝藻水华监测中的应用[J]. 中国环境监测, 2019, 35(3): 146-155. doi: 10.19316/j.issn.1002-6002.2019.03.19

    LI X W, ZHANG Y, SHI H, et al. Application of maximum chlorophyll index derived from Sentinel-3A satellite OLCI data for monitoring cyanobacteria blooms in Lake Taihu[J]. Environmental Monitoring in China, 2019, 35(3): 146-155(in Chinese). doi: 10.19316/j.issn.1002-6002.2019.03.19
    [7] 朱冰川, 尤凯, 石浚哲, 等. 基于GOCI数据的太湖叶绿素a浓度反演和蓝藻水华遥感监测[J]. 环境污染与防治, 2020, 42(8): 1021-1025. doi: 10.15985/j.cnki.1001-3865.2020.08.017

    ZHU B C, YOU K, SHI J Z, et al. Retrieval of chlorophyll-a and remote sensing monitoring of cyanobacteria blooms in Taihu Lake based on GOCI data[J]. Environmental Pollution & Control, 2020, 42(8): 1021-1025(in Chinese). doi: 10.15985/j.cnki.1001-3865.2020.08.017
    [8] WANG G L, LI J S, ZHANG B, et al. Monitoring cyanobacteria-dominant algal blooms in eutrophicated Taihu Lake in China with synthetic aperture radar images[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(1): 139-148. doi: 10.1007/s00343-015-4019-8
    [9] 陈立福, 刘燕芝, 张鹏, 等. 基于Multi-Path RefineNet的多特征高分辨率SAR图像道路提取算法[J]. 计算机科学, 2020, 47(3): 156-161. doi: 10.11896/jsjkx.190100124

    CHEN L F, LIU Y Z, ZHANG P, et al. Road extraction algorithm of multi-feature high-resolution SAR image based on Multi-Path RefineNet[J]. Computer Science, 2020, 47(3): 156-161(in Chinese). doi: 10.11896/jsjkx.190100124
    [10] 汪航, 陈晓, 田晟兆, 等. 基于小样本学习的SAR图像识别[J]. 计算机科学, 2020, 47(5): 124-128. doi: 10.11896/jsjkx.190400136

    WANG H, CHEN X, TIAN S Z, et al. SAR image recognition based on few-shot learning[J]. Computer Science, 2020, 47(5): 124-128(in Chinese). doi: 10.11896/jsjkx.190400136
    [11] 李凉海, 刘善伟, 周鹏, 等. SAR卫星组网观测技术与海洋应用研究进展[J]. 海洋科学, 2021, 45(5): 145-156.

    LI L H, LIU S W, ZHOU P, et al. Research progress of SAR satellite network observation technology and ocean application[J]. Marine Sciences, 2021, 45(5): 145-156(in Chinese).
    [12] RODRIGUEZ-ALVAREZ N, OUDRHIRI K. The bistatic radar as an effective tool for detecting and monitoring the presence of phytoplankton on the ocean surface[J]. Remote Sensing, 2021, 13(12): 2248. doi: 10.3390/rs13122248
    [13] BAN W, ZHANG K F, YU K G, et al. Detection of red tide over sea surface using GNSS-R spaceborne observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-11.
    [14] 白晓华, 胡维平, 胡志新, 等. 2004年夏季太湖梅梁湾席状漂浮水华风力漂移入湾量计算[J]. 环境科学, 2005, 26(6): 57-60. doi: 10.3321/j.issn:0250-3301.2005.06.011

    BAI X H, HU W P, HU Z X, et al. Importation of wind-driven drift of mat-like algae bloom into Meiliang Bay of Taihu Lake in 2004 summer[J]. Environmental Science, 2005, 26(6): 57-60(in Chinese). doi: 10.3321/j.issn:0250-3301.2005.06.011
    [15] CAO H S, KONG F X, LUO L C, et al. Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of microcystis aeruginosa in Lake Taihu[J]. Journal of Freshwater Ecology, 2006, 21(2): 231-238. doi: 10.1080/02705060.2006.9664991
    [16] 杨东凯, 张其善. GNSS反射信号处理基础与实践[M]. 北京: 电子工业出版社, 2012.

    YANG D K, ZHANG Q S. GNSS reflected signal processing: Fundamentals and applications[M]. Beijing: Publishing House of Electronics Industry, 2012(in Chinese).
    [17] ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 951-964. doi: 10.1109/36.841977
    [18] GLEASON S, RUF C S, CLARIZIA M P, et al. Calibration and unwrapping of the normalized scattering cross section for the cyclone global navigation satellite system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2495-2509. doi: 10.1109/TGRS.2015.2502245
    [19] BOWEN C C, JENSEN T E. Blue-green algae: Fine structure of the gas vacuoles[J]. Science, 1965, 147(3664): 1460-1462. doi: 10.1126/science.147.3664.1460
    [20] CAMPS A. Spatial resolution in GNSS-R under coherent scattering[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1): 32-36. doi: 10.1109/LGRS.2019.2916164
    [21] AL-KHALDI M M, JOHNSON J T, GLEASON S, et al. An algorithm for detecting coherence in cyclone global navigation satellite system mission level-1 delay-Doppler maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4454-4463. doi: 10.1109/TGRS.2020.3009784
    [22] 刘奇, 张双成, 南阳, 等. 利用星载GNSS-R相干信号探测南亚洪水[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1641-1648.

    LIU Q, ZHANG S C, NAN Y, et al. Flood detection of south Asia using spaceborne GNSS-R coherent signals[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1641-1648(in Chinese).
    [23] KATZBERG S J, TORRES O, GANOE G. Calibration of reflected GPS for tropical storm wind speed retrievals[J]. Geophysical Research Letters, 2006, 33(18): 122-140.
    [24] ZHANG Y, YIN J W, YANG S H, et al. High wind speed inversion model of CYGNSS sea surface data based on machine learning[J]. Remote Sensing, 2021, 13(16): 3324. doi: 10.3390/rs13163324
    [25] 杨柳燕, 杨欣妍, 任丽曼, 等. 太湖蓝藻水华暴发机制与控制对策[J]. 湖泊科学, 2019, 31(1): 18-27. doi: 10.18307/2019.0102

    YANG L Y, YANG X Y, REN L M, et al. Mechanism and control strategy of cyanobacterial bloom in Lake Taihu[J]. Journal of Lake Sciences, 2019, 31(1): 18-27(in Chinese). doi: 10.18307/2019.0102
    [26] GEREMIA-NIEVINSKI F, SILVA M F E, BONIFACE K, et al. GPS diffractive reflectometry: Footprint of a coherent radio reflection inferred from the sensitivity kernel of multipath SNR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4884-4891. doi: 10.1109/JSTARS.2016.2579599
    [27] 李云梅, 黄家柱, 韦玉春, 等. 湖泊富营养化状态的地面高光谱遥感评价[J]. 环境科学, 2006, 27(9): 1770-1775. doi: 10.3321/j.issn:0250-3301.2006.09.013

    LI Y M, HUANG J Z, WEI Y C, et al. Evaluating eutrophic state of Taihu Lake by in situ hyperspectra[J]. Environmental Science, 2006, 27(9): 1770-1775(in Chinese). doi: 10.3321/j.issn:0250-3301.2006.09.013
    [28] 李旭文, 姜晟, 张悦, 等. “哨兵-3”卫星OLCI影像MPH算法反演太湖叶绿素a及藻草区分的研究[J]. 环境监控与预警, 2019, 11(5): 59-65.

    LI X W, JIANG S, ZHANG Y, et al. Maximum peak height (MPH) algorithm applied to Sentinel-3 OLCI data for retrieving chlorophyll-a and distinguishing cyanobacteria and floating vegetation areas in Lake Taihu[J]. Environmental Monitoring and Forewarning, 2019, 11(5): 59-65(in Chinese).
    [29] MATTHEWS M W, ODERMATT D. Improved algorithm for routine monitoring of cyanobacteria and eutrophication in inland and near-coastal waters[J]. Remote Sensing of Environment, 2015, 156: 374-382. doi: 10.1016/j.rse.2014.10.010
    [30] RUF C, GLEASON S, JELENAK Z, et al. The NASA EV-2 cyclone global navigation satellite system (CYGNSS) mission[C]//Proceedings of the IEEE Aerospace Conference. Piscataway: IEEE Press, 2013: 1-7.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  41
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 录用日期:  2022-05-27
  • 网络出版日期:  2022-05-31
  • 整期出版日期:  2024-03-27

目录

    /

    返回文章
    返回
    常见问答