留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微纳卫星总剂量评估优化

佘璇 楼海君 宋仁庭 李琪聪 金仲和

佘璇,楼海君,宋仁庭,等. 微纳卫星总剂量评估优化[J]. 北京航空航天大学学报,2024,50(3):985-993 doi: 10.13700/j.bh.1001-5965.2022.0331
引用本文: 佘璇,楼海君,宋仁庭,等. 微纳卫星总剂量评估优化[J]. 北京航空航天大学学报,2024,50(3):985-993 doi: 10.13700/j.bh.1001-5965.2022.0331
SHE X,LOU H J,SONG R T,et al. Optimization of TID assessment of micro-satellites[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):985-993 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0331
Citation: SHE X,LOU H J,SONG R T,et al. Optimization of TID assessment of micro-satellites[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):985-993 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0331

微纳卫星总剂量评估优化

doi: 10.13700/j.bh.1001-5965.2022.0331
详细信息
    通讯作者:

    E-mail:louhj04@zju.edu.cn

  • 中图分类号: O571.33

Optimization of TID assessment of micro-satellites

More Information
  • 摘要:

    针对微纳卫星在空间环境中遇到的总剂量(TID)效应,为更加准确地评估卫星内敏感点的剂量值,基于正二十面体的几何划分方法改进了传统的空间网格划分,宏观计算并验证了粒子透过材料的衰减,实现扇形角等效评估优化。围绕计算准确度和效率,构建形状模型进行比较验证,通过与优化等立体角划分法、正八面体划分法的比较,表明该方法更加稳定高效,计算速度可提高6.4%,更适合评估复杂形状模型。基于改进的三维总剂量评估方法,对形状模型进行针对性总剂量防护,防护效果相较于无差别防护可提高255.1%。研究成果可有效提高微纳卫星总剂量评估效率,保障星内敏感器件在任务周期内的可靠运行,为微纳卫星总剂量防护提供重要参考。

     

  • 图 1  粒子传输方式

    Figure 1.  Particle transportation method

    图 2  三维总剂量评估流程

    Figure 2.  Three-dimensional TID assessment process

    图 3  剂量-深度曲线

    Figure 3.  Dose-depth curves

    图 4  三维形状模型

    Figure 4.  Three-dimensional shape model

    图 5  总剂量计算

    Figure 5.  TID calculation

    图 6  模型d的剂量分布

    Figure 6.  Dose distribution of model d

    图 7  模型d的总剂量计算

    Figure 7.  TID calculation of model d

    图 8  总剂量计算时间

    Figure 8.  TID calculation time

    图 9  平均每根射线计算时间

    Figure 9.  Average calculation time per ray

    图 10  三维剂量分布

    Figure 10.  Three-dimensional dose distribution

    图 11  针对性加固

    Figure 11.  Targeted reinforcement

    图 12  加固后的剂量分布

    Figure 12.  Dose distribution after reinforcement

  • [1] 党炜. COTS应用于空间辐射环境的可靠性研究[D]. 北京: 中国科学院研究生院, 2007: 3-68.

    DANG W. Reliability study on COTS used in space radiation environment[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2007: 3-68(in Chinese).
    [2] JI X Y, LI Y Z, LIU G Q, et al. A brief review of ground and flight failures of Chinese spacecraft[J]. Progress in Aerospace Sciences, 2019, 107: 19-29. doi: 10.1016/j.paerosci.2019.04.002
    [3] BEDINGFIELD K L, LEACH R D. Spacecraft system failures and anomalies attributed to the natural space environment[C]//Proceedings of the Space Programs and Technologies Conference. Reston: AIAA, 1995: 41-43.
    [4] KIMOTO Y, KOSHIISHI H, MATSUMOTO H, et al. Total dose orbital data by dosimeter onboard Tsubasa (MDS-1) satellite[J]. IEEE Transactions on Nuclear Science, 2003, 50(6): 2301-2306. doi: 10.1109/TNS.2003.821399
    [5] BUDROWEIT J, SZNAJDER M. Total ionizing dose effects on a highly integrated RF transceiver for small satellite radio applications in low Earth orbit[C]//Proceedings of the IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits. Piscataway: IEEE Press, 2018: 1-6.
    [6] SLATER W S, TIWARI N P, LOVELLY T M, et al. Total ionizing dose radiation testing of NVIDIA Jetson nano GPUs[C]//Proceedings of the IEEE High Performance Extreme Computing Conference. Piscataway: IEEE Press, 2020: 1-3.
    [7] 张振力, 李郑发, 唐心春, 等. 基于Pro/E的三维总剂量分析软件实现及其在微小卫星中的应用[J]. 航天器环境工程, 2014, 31(6): 620-624. doi: 10.3969/j.issn.1673-1379.2014.06.010

    ZHANG Z L, LI Z F, TANG X C, et al. Development of three-dimensional total dose analysis software based on Pro/E and its application in micro-satellites[J]. Spacecraft Environment Engineering, 2014, 31(6): 620-624(in Chinese). doi: 10.3969/j.issn.1673-1379.2014.06.010
    [8] 薛玉雄, 马亚莉, 杨生胜, 等. 载人航天器舱内辐射剂量监测技术综述[J]. 航天器环境工程, 2010, 27(2): 210-214. doi: 10.3969/j.issn.1673-1379.2010.02.018

    XUE Y X, MA Y L, YANG S S, et al. Overview of radiation dose monitoring technology in manned spacecraft[J]. Spacecraft Environment Engineering, 2010, 27(2): 210-214(in Chinese). doi: 10.3969/j.issn.1673-1379.2010.02.018
    [9] 蔡明辉, 韩建伟. 基于ProE的航天器三维屏蔽与辐射剂量评估方法研究[J]. 宇航学报, 2012, 33(6): 830-835.

    CAI M H, HAN J W. Method for evaluating shielding thicknesses and radiation dose inside spacecraft based on ProE[J]. Journal of Astronautics, 2012, 33(6): 830-835(in Chinese).
    [10] 高著秀, 王玉林, 孙健, 等. 基于结构表面云图的三维总剂量效应评估方法研究[J]. 宇航总体技术, 2018, 2(5): 37-41.

    GAO Z X, WANG Y L, SUN J, et al. A new method for evaluating three-dimensional total dose effects based on structure surface cloud picture[J]. Astronautical Systems Engineering Technology, 2018, 2(5): 37-41(in Chinese).
    [11] CALVEL P, BARILLOT C, PORTE A, et al. Review of deposited dose calculation methods using ray tracing approximations[J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 3106-3113. doi: 10.1109/TNS.2008.2007298
    [12] NIDHIN T S, BHATTACHARYYA A, GOUR A, et al. Measurement of radiation absorbed dose effects in SRAM-based FPGAs[J]. IETE Journal of Research, 2020, 68(5): 3418-3427.
    [13] KARTASHOV D, SHURSHAKOV V. Analysis of space radiation exposure levels at different shielding configurations by ray-tracing dose estimation method[J]. Acta Astronautica, 2018, 144: 320-330. doi: 10.1016/j.actaastro.2018.01.013
    [14] PONOMAREV A L, NOUNU H N, HUSSEIN H F, et al. NASA-developed ProE-based tool for the ray-tracing of spacecraft geometry to determine radiation doses and particle fluxes in habitable areas of spacecraft and in the human body: NASA/TP-2007-214770 [R]. Washington, D. C.: NASA, 2007.
    [15] WANG N, LEE J L. Geometric properties of the icosahedral-hexagonal grid on the two-sphere[J]. SIAM Journal on Scientific Computing, 2011, 33(5): 2536-2559. doi: 10.1137/090761355
    [16] 陈善强. Geant4在空间辐射效应分析中的应用研究[D]. 北京: 中国科学院大学, 2019: 56-59.

    CHEN S Q. Space radiation analysis based on Geant4[D]. Beijing: University of Chinese Academy of Sciences, 2019: 56-59(in Chinese).
    [17] SAWYER D M, VETTE J I. AP-8 trapped proton environment for solar maximum and solar minimum: NASA-TM-X-72605[R]. Washington, D. C.: NASA, 1976: 6-8.
    [18] XAPSOS M A, SUMMERS G P, BARTH J L, et al. Probability model for cumulative solar proton event fluences[J]. IEEE Transactions on Nuclear Science, 2000, 47(3): 486-490. doi: 10.1109/23.856469
    [19] SAJID M, CHECHENIN N G, TORRES F S, et al. Space radiation environment prediction for VLSI microelectronics devices onboard a LEO satellite using OMERE-TRAD software[J]. Advances in Space Research, 2015, 56(2): 314-324. doi: 10.1016/j.asr.2015.04.011
    [20] SELTZER S M. Updated calculations for routine space-shielding radiation dose estimates: SHIELDOSE-2: NISTIR 5477[R]. Gaithersburg: NIST, 1994.
    [21] ZIEGLER J F. Stopping of energetic light ions in elemental matter[J]. Journal of Applied Physics, 1999, 85(3): 1249-1272. doi: 10.1063/1.369844
  • 加载中
图(12)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  71
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 录用日期:  2022-08-07
  • 网络出版日期:  2022-08-29
  • 整期出版日期:  2024-03-27

目录

    /

    返回文章
    返回
    常见问答