留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质素制备航油工艺与能耗优化

黄星华 董升飞 杨晓奕

黄星华,董升飞,杨晓奕. 木质素制备航油工艺与能耗优化[J]. 北京航空航天大学学报,2024,50(3):904-912 doi: 10.13700/j.bh.1001-5965.2022.0347
引用本文: 黄星华,董升飞,杨晓奕. 木质素制备航油工艺与能耗优化[J]. 北京航空航天大学学报,2024,50(3):904-912 doi: 10.13700/j.bh.1001-5965.2022.0347
HUANG X H,DONG S F,YANG X Y. Optimization of energy consumption on aviation biofuel derived from lignin[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):904-912 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0347
Citation: HUANG X H,DONG S F,YANG X Y. Optimization of energy consumption on aviation biofuel derived from lignin[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):904-912 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0347

木质素制备航油工艺与能耗优化

doi: 10.13700/j.bh.1001-5965.2022.0347
基金项目: 国家重点研发计划(2018YFB1501505)
详细信息
    通讯作者:

    E-mail:yangxiaoyi@buaa.edu.cn

  • 中图分类号: V312.3

Optimization of energy consumption on aviation biofuel derived from lignin

Funds: National key R & D program of China (2018YFB1501505)
More Information
  • 摘要:

    木质素单体的环状结构使其成为航空替代燃料中芳香烃和环烷烃制备的有效前驱体。通过比较分析木质素加氢制备芳香烃和环烷烃、气化制氢、燃烧供热路径的工艺特点和物流信息,采用Aspen Plus进行不同路径的物耗及能耗分析。其中木质素制备芳香烃收率为17.3%~20.7%,环烷烃收率为17.5%~23.7%,气化制氢收率为35.519 g/kg木质素,燃烧供热为22.942 MJ/kg木质素。基于充分利用木质素的原则,以木质素气化制氢作为氢源,木质素燃烧作为热源,结合芳香烃和环烷烃制备路径,设计了多条木质素制备航油自供氢自供热的综合工艺。通过能耗分析和优化,得出木质素热解-烷基化-加氢制备芳香烃或环烷烃综合工艺航油综合收率为11.8%或9.2%,综合热负荷为7.357 MJ/kg或7.687 MJ/kg木质素;木质素热解-烷基化-加氢制备芳香烃和环烷烃(1∶1)综合工艺航油综合收率为10.3%,综合热负荷为7.538 MJ/kg木质素,综合氢耗为0.27%。木质素一步法加氢制备航油工艺虽然反应条件温和,流程简单,但仍需进一步改善反应体系以解决高能耗的问题。

     

  • 图 1  木质素的典型结构及3种主要单体

    Figure 1.  Typical structure of lignin and three primary monomers

    图 2  木质素衍生物加氢过程的HYD和DDO路径

    Figure 2.  HYD and DDO route in hydrotreating of lignin derived compounds

    图 3  木质素衍生物加氢制备芳香烃或环烷烃过程

    Figure 3.  Hydrotreating of lignin derivatives for preparation of aromatic or naphthenic hydrocarbons

    图 4  木质素热解-烷基化-加氢制备芳香烃和环烷烃工艺流程

    Figure 4.  Process flow of aromatic and naphthenic hydrocarbons production by lignin pyrolysis-alkylation-hydrotreating

    图 5  木质素一步法加氢制备芳香烃工艺流程

    Figure 5.  Process flow of aromatic hydrocarbons production by lignin one-step hydrotreating

    图 6  木质素一步法加氢制备环香烃工艺流程

    Figure 6.  Process flow of naphthenic hydrocarbons production by lignin one-step hydrotreating

    图 7  木质素气化制备氢气工艺流程

    Figure 7.  Process flow of hydrogen production by lignin gasification

    图 8  木质素燃烧供热工艺流程

    Figure 8.  Process flow of heat production by lignin combustion

    图 9  木质素制备芳香烃和环烷烃(1∶1)自供氢自供热综合工艺能流结构图

    Figure 9.  Energy flow structure of integrated process of aromatic and naphthenic hydrocarbons (1∶1) production from lignin with self-supply of hydrogen and self-supply of heat

    表  1  不同木质素气化制氢工艺的反应条件及产物对比

    Table  1.   Characteristics of various types of lignin gasification processes for preparation of hydrogen

    气化制氢方式 反应条件 气相产率/% 合成气分布/%
    H2 CO CO2 CH4 其他a
    热解气化[17] Ni-Mg-Al 、900 ℃ 55.1 54.6 14.6 24.1 6.4 0.3
    蒸汽气化[18] 800 ℃ 60.7 16.9 18.1 4.0 0.3
    超临界水气化[19] 650 ℃ 12.9 38.0 36.0 23.0 3.0
     注: a 表示碳数为2及以上的轻质气态烃。
    下载: 导出CSV

    表  2  常见木质素类生物质的木质素含量及热值

    Table  2.   Lignin content and higher heat value of common lignocellulosic biomasses

    类型 生物质原料 木质素含量/% HHV/(MJ·kg−1)
    软木 松树 30.0 20.24
    门氏绿豆杉 33.9 19.66
    大西洋雪松 34.5 20.36
    硬木 桉树 25.8 17.63
    橡木 22.2 18.70
    樱桃树 26.4 18.26
    下载: 导出CSV

    表  3  木质素热解-烷基化-加氢制备芳香烃和环烷烃路径能耗分析

    Table  3.   Energy consumption analysis of aromatic and naphthenic hydrocarbons production by lignin pyrolysis-alkylation- hydrotreating pathway

    反应单元 操作条件 物质输入 物质流/kg 物质输出 物质流/kg 热负荷/(MJ·kg−1a
    热解反应器 500 ℃ 木质素 1.000 木质素 0.029 1.688
    N2 0.466 N2 0.466
    HZSM-5 热解油b 0.262
    热解气 c 0.315
    H2O 0.186
    焦炭 0.208
    余热回收 20 ℃、80%效率 −1.479
    分离器 分离热解油
    烷基化反应器 60 ℃ 热解油 b 0.262 油相:C8~C15芳香烃 0.173 10.620
    烷基化剂d 0.639 油相:其他e 0.046
    [bmim]Cl-2AlCl3 富余C2~C4烯烃 0.038
    其他气相 0.437
    其他f 0.207
    分离器 分离芳香烃
    加氢反应器 180 ℃、5 MPa 油相:C8~C15 芳香烃 0.219 C8~C15环烷烃 0.175 18.024
    油相:其他e 0.046 其他环烷烃g 0.053
    H2 0.013 富余H2 0.004
    余热回收 20 ℃、80%效率 −15.029
     注: a 热负荷基于每kg木质素,正值为吸热,负值为放热;b 含有 36%苯,32%甲苯,11%二甲苯,1%对乙基甲苯,2%三甲苯,1%苯酚,18%萘;c 含有 23% CO,37% CO2,35% C2~C4烷烃,5% C2~C4烯烃;d 含有 17.3% CO,35.0% CO2,7.1% C3H8,18.3% C3H6,7.5% C2H4,5.7% C4H8,2.0% CH4,7.1% C5H12;e 含有碳数6~7单环芳香烃,碳数16以上萘类碳氢化合物;f 假设为焦炭;g 含有碳数6~7单环环烷烃,碳数16以上双环环烷烃。
    下载: 导出CSV

    表  4  木质素一步法加氢制备芳香烃路径能耗分析

    Table  4.   Energy consumption analysis of aromatic hydrocarbons production by lignin one-step hydrotreating pathway

    反应单元 操作条件 物质输入 物质流/kg 物质输出 物质流/kg 热负荷/(MJ·kg−1a
    加氢反应器 250 ℃、0.7 MPa H2(初始) 木质素 1.000 木质素 0.541 190.969
    H2O 149.815 H2O 149.815
    H2 0.287 富余H2 0.255
    Ru/Nb2O5 其他气相(CH4) 0.155
    芳香烃b 0.207
    其他液相c 0.129
    余热回收 20 ℃、80%效率 −153.102
    分离器 分离芳香烃
     注: a 热负荷基于每kg木质素,正值为吸热,负值为放热;b 含有13.5%甲苯,44.0%乙苯,0.5%二甲苯,41.1%丙苯,1.0%甲基乙苯;c表示环烷烃、烷烃、二苯基衍生物等。
    下载: 导出CSV

    表  5  木质素一步法加氢制备环烷烃路径能耗分析

    Table  5.   Energy consumption analysis of naphthenic hydrocarbons production by lignin one-step hydrotreating pathway

    反应单元 操作条件 物质输入 物质流/kg 物质输出 物质流/kg 热负荷/(MJ·kg−1a
    加氢反应器 300 ℃、6 MPa H2(初始) 木质素 1.000 木质素 0.220 120.050
    十二烷 29.982 十二烷 29.982
    H2 0.738 富余H2 0.655
    Ni/ASA 气相(98% CH4、2% C2~C4烷烃) 0.504
    C8~C16环烷烃 0.237
    其他液相b 0.122
    余热回收 20 ℃、80%效率 −89.910
    分离器 分离环烷烃
     注: a 热负荷基于每kg木质素,正值为吸热,负值为放热;b 包括碳数8以下短链烷烃/环烷烃,碳数17以上长链环烷烃等。
    下载: 导出CSV

    表  6  木质素气化制备氢气路径能耗分析

    Table  6.   Energy consumption analysis of hydrogen production by lignin gasification pathway

    反应单元 操作条件 物质输入 物质流/kg 物质输出 物质流/kg 热负荷/(MJ·kg−1a
    气化反应器 900 ℃ 木质素 1.000 残留物b 0.480 21.483
    H2O 2.400 H2O 2.369
    N2 11.185 N2 11.185
    Ni-Ca-Al CO 0.133
    H2 0.036
    CO2 0.345
    CH4 0.033
    C2~C4 0.004
    余热回收 20 ℃、80%效率 −18.370
    分离器 分离氢气
     注: a 热负荷基于每kg木质素,正值为吸热,负值为放热;b 假设为未转化的木质素。
    下载: 导出CSV

    表  7  木质素燃烧供热路径能耗分析

    Table  7.   Energy consumption analysis of heat production by lignin combustion pathway

    反应单元 操作条件 物质输入 物质流/kg 物质输出 物质流/kg 热负荷/(MJ·kg−1a
    燃烧反应器 1 300 ℃ 木质素 1.000 N2 6.267 −11.487
    O2 1.903 H2O 0.548
    N2 6.267 CO2 2.355
    余热回收 20 ℃、80%效率 −11.455
     注:a 热负荷基于每kg木质素,正值为吸热,负值为放热。
    下载: 导出CSV

    表  8  木质素制备航油自供氢自供热综合工艺能流分析

    Table  8.   Energy analysis of integrated processes of aviation biofuel production from lignin by self-supply of hydrogen and self-supply of heat

    综合工艺
    (自供氢自供热)
    航油综合
    收率/% a
    综合热负
    荷/MJ b
    综合
    氢耗/% c
    木质素消耗比例/% 热量消耗比例/% 氢气消耗比例/%
    芳香烃
    制备单元
    环烷烃
    制备单元
    制热
    单元
    制氢
    单元
    芳香烃
    制备单元
    环烷烃
    制备单元
    制氢
    单元
    芳香烃
    制备单元
    环烷烃
    制备单元
    热解-烷基化
    制备芳香烃
    11.8 7.357 67.9 32.1 100.0
    热解-烷基化-加氢
    制备环烷烃
    9.2 7.687 0.50 52.4 33.5 14.1 94.3 5.7 100.0
    一步法加氢
    制备芳香烃
    5.6 11.067 0.87 27.2 48.2 24.6 93.1 6.9 100.0
    一步法加
    氢制备环烷烃
    4.7 7.510 1.68 20.1 32.7 47.2 80.4 19.6 100.0
    热解-烷基化-加氢
    制备芳香烃和环烷烃(1∶1)
    10.3 7.538 0.27 30.7 28.7 32.9 7.7 44.1 52.7 3.2 100.0
    一步法加氢制备
    芳香烃和环烷烃(1∶1)
    5.2 9.235 1.29 13.2 10.3 40.3 36.2 54.1 33.7 12.2 32.8 67.2
     注:a 航油综合收率=综合工艺航油质量/总消耗木质素质量×100%;b 综合工艺中消耗每千克(kg)木质素所需的热负荷(MJ);c综合氢耗=综合工艺氢气消耗质量/木质素质量×100%。
    下载: 导出CSV
  • [1] 黄星华, 董升飞, 杨晓奕. 纤维素航油缩合-加氢工艺能耗分析[J]. 北京航空航天大学学报, 2022, 48(1): 121-131. doi: 10.13700/j.bh.1001-5965.2020.0506

    HUANG X H, DONG S F, YANG X Y. Energy consumption of condensation-hydrogenation process to prepare alkanes from lignocellulose biomass[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 121-131(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0506
    [2] LI S, ZHENG H S, ZHENG Y J, et al. Recent advances in hydrogen production by thermo-catalytic conversion of biomass[J]. International Journal of Hydrogen Energy, 2019, 44(28): 14266-14278. doi: 10.1016/j.ijhydene.2019.03.018
    [3] DIESTE A, CLAVIJO L, TORRES A I, et al. Lignin from Eucalyptus SPP. Kraft Black Liquor as Biofuel[J]. Energy & Fuels, 2016, 30(12): 10494-10498.
    [4] CHENG F, BREWER C E. Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 673-722. doi: 10.1016/j.rser.2017.01.030
    [5] AZADI P, INDERWILDI O R, FARNOOD R, et al. Liquid fuels, hydrogen and chemicals from lignin: A critical review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 506-523. doi: 10.1016/j.rser.2012.12.022
    [6] CHIO C, SAIN M, QIN W S. Lignin Utilization: A review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249. doi: 10.1016/j.rser.2019.03.008
    [7] TRIBOT A, AMER G, ABDOU ALIO M, et al. Wood-lignin: Supply, extraction processes and use as bio-based material[J]. European Polymer Journal, 2019, 112: 228-240. doi: 10.1016/j.eurpolymj.2019.01.007
    [8] LUO Z C, WANG Y M, HE M Y, et al. Precise oxygen scission of lignin derived aryl ethers to quantitatively produce aromatic hydrocarbons in water[J]. Green Chemistry, 2016, 18(2): 433-441. doi: 10.1039/C5GC01790D
    [9] HONG Y C, ZHANG H, SUN J M, et al. Synergistic catalysis between Pd and Fe in Gas phase hydrodeoxygenation of m-cresol[J]. ACS Catalysis, 2014, 4(10): 3335-3345. doi: 10.1021/cs500578g
    [10] GUO T Y, XIA Q N, SHAO Y, et al. Direct deoxygenation of lignin model compounds into aromatic hydrocarbons through hydrogen transfer reaction[J]. Applied Catalysis A:General, 2017, 547: 30-36. doi: 10.1016/j.apcata.2017.07.050
    [11] SHAO Y, XIA Q N, DONG L, et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst[J]. Nature Communications, 2017, 8(1): 16104. doi: 10.1038/ncomms16104
    [12] LASKAR D D, YANG B, WANG H M, et al. Pathways for biomass-derived lignin to hydrocarbon fuels[J]. Biofuels, Bioproducts and Biorefining, 2013, 7(5): 602-626. doi: 10.1002/bbb.1422
    [13] SAIDI M, SAMIMI F, KARIMIPOURFARD D, et al. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy & Environmental Science, 2014, 7(1): 103-129.
    [14] GUAN W X, CHEN X A, JIN S H, et al. Highly stable Nb2O5-Al2O3 composites supported pt catalysts for hydrodeoxygenation of diphenyl ether[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14034-14042.
    [15] LUO Z C, ZHENG Z X, WANG Y C, et al. Hydrothermally stable Ru/hzsm-5-catalyzed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water[J]. Green Chemistry, 2016, 18(21): 5845-5858. doi: 10.1039/C6GC01971D
    [16] WANG H L, FENG M Q, YANG B. Catalytic hydrodeoxygenation of anisole: An insight into the role of metals in transalkylation reactions in bio-oil upgrading[J]. Green Chemistry, 2017, 19(7): 1668-1673. doi: 10.1039/C6GC03198F
    [17] WU C F, WANG Z C, DUPONT V, et al. Nickel-catalysed pyrolysis/gasification of biomass components[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99: 143-148. doi: 10.1016/j.jaap.2012.10.010
    [18] FERDOUS D, DALAI A K, BEJ S K, et al. Production of H2 and medium heating value gas via steam gasification of lignins in fixed-bed reactors[J]. The Canadian Journal of Chemical Engineering, 2001, 79(6): 913-922. doi: 10.1002/cjce.5450790609
    [19] KANG K, AZARGOHAR R, DALAI A, et al. Hydrogen generation via supercritical water gasification of lignin using Ni-Co/Mg-Al catalysts[J]. International Journal of Energy Research, 2017, 41(13): 1835-1846. doi: 10.1002/er.3739
    [20] DEMIRBAS A. Higher heating values of lignin types from wood and non-wood lignocellulosic biomasses [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(6): 592-598.
    [21] BI P Y, WANG J C, ZHANG Y J, et al. From lignin to cycloparaffins and aromatics: Directional synthesis of jet and diesel fuel range biofuels using biomass[J]. Bioresource Technology, 2015, 183: 10-17. doi: 10.1016/j.biortech.2015.02.023
    [22] KONG J C, HE M Y, LERCHER J A, et al. Direct production of naphthenes and paraffins from lignin[J]. Chemical Communications, 2015, 51(99): 17580-17583. doi: 10.1039/C5CC06828B
    [23] SHAFER L, STRIEBICH R, GOMACH J, et al. Chemical class composition of commercial jet fuels and other specialty kerosene fuels [C]//Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  74
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 录用日期:  2022-07-23
  • 网络出版日期:  2022-08-02
  • 整期出版日期:  2024-03-27

目录

    /

    返回文章
    返回
    常见问答