留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑滑块动态特性的变质心四旋翼无人机双回路控制

杜青峰 荆武兴 高长生 安若铭

杜青峰,荆武兴,高长生,等. 考虑滑块动态特性的变质心四旋翼无人机双回路控制[J]. 北京航空航天大学学报,2024,50(3):861-873 doi: 10.13700/j.bh.1001-5965.2022.0350
引用本文: 杜青峰,荆武兴,高长生,等. 考虑滑块动态特性的变质心四旋翼无人机双回路控制[J]. 北京航空航天大学学报,2024,50(3):861-873 doi: 10.13700/j.bh.1001-5965.2022.0350
DU Q F,JING W X,GAO C S,et al. Dual-loop control of mass-actuated quadrotor UAV considering dynamic characteristics of moving mass[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):861-873 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0350
Citation: DU Q F,JING W X,GAO C S,et al. Dual-loop control of mass-actuated quadrotor UAV considering dynamic characteristics of moving mass[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):861-873 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0350

考虑滑块动态特性的变质心四旋翼无人机双回路控制

doi: 10.13700/j.bh.1001-5965.2022.0350
基金项目: 国家自然科学基金(11572097)
详细信息
    通讯作者:

    E-mail:jingwuxing@163.com

  • 中图分类号: V249.1

Dual-loop control of mass-actuated quadrotor UAV considering dynamic characteristics of moving mass

Funds: National Natural Science Foundation of China (11572097)
More Information
  • 摘要:

    针对滑块动态特性引入的附加干扰力矩造成系统姿态抖动强烈的问题,开展变质心四旋翼无人机滑块参数设计与姿态/伺服双回路控制研究。通过建立双滑块变质心四旋翼无人机八自由度运动模型,明确了滑块的引入对系统的影响,给出了与滑块动态特性相关的各项附加干扰力矩;分析并设计了滑块的安装位置、质量以及行程等参数,降低滑块对系统的耦合与干扰;最后以滑块驱动力作为控制量,设计了姿态/伺服双回路动态滑模控制器,同时利用非线性扰动观测器对复合扰动进行估计和补偿,并进行了仿真试验。仿真结果表明,在考虑滑块动态特性的情况下,所设计的控制器能够实现对变质心四旋翼无人机的姿态控制,并具有良好的抗干扰性能与鲁棒性。

     

  • 图 1  变质心四旋翼无人机构型

    Figure 1.  Configuration of mass-actuated quadcopter UAV

    图 2  不同安装位置引入的附加转动惯量

    Figure 2.  Importing additional moment of inertia with different installation position

    图 3  不同滑块质量引入的附加转动惯量

    Figure 3.  Importing additional moment of inertia with different slider masses

    图 4  不同滑块行程引入的附加转动惯量

    Figure 4.  Importing additional moment of inertia with different slide strokes

    图 5  不同安装位置引入的附加干扰力矩

    Figure 5.  Importing disturbance torque with different installation positions

    图 6  不同滑块质量引入的附加干扰力矩

    Figure 6.  Importing disturbance torque with different slider masses

    图 7  不同滑块行程引入的附加干扰力矩

    Figure 7.  Importing disturbance torque with different slide strokes

    图 8  不同滑块质量下机体角速度

    Figure 8.  Angular velocity with different slider masses

    图 9  不同滑块行程下机体角速度

    Figure 9.  Angular velocity with different slide strokes

    图 10  变质心四旋翼无人机姿态控制原理图

    Figure 10.  Schematic diagram of mass-actuated quadrotor UAV attitude control

    图 11  阶跃指令下滚转角响应曲线

    Figure 11.  Roll response curves under step command

    图 12  阶跃指令下滑块位置响应曲线

    Figure 12.  Response curves of slider position under step command

    图 13  滑块驱动力响应曲线

    Figure 13.  Response curve of slider driving force

    图 14  3种工况下滚转角响应曲线

    Figure 14.  Roll response curves under three working conditions

    图 15  3种工况下滑块位置响应曲线

    Figure 15.  Response curves of slider position under three working conditions

    表  1  仿真初始参数

    Table  1.   Initial parameters of simulation

    参 数 数 值
    机体质量/kg 10
    机体转动惯量$ {I_{xx}} $/(kg·m2 1.441
    机体转动惯量Iyy/(kg·m2 1.608
    机体转动惯量Izz/(kg·m2 2.886
    旋翼臂长L/m 0.5
    旋翼质心高度Z0/m 0.05
    初始姿态角/rad $ {\left[ {\begin{array}{*{20}{c}} 0&0&0 \end{array}} \right]^{\mathrm{T}}} $
    初始角速度/(rad·s−1) $ {\left[ {\begin{array}{*{20}{c}} 0&0&0 \end{array}} \right]^{\mathrm{T}}} $
    滑块1与滑块2质量/kg 1
    滑块初始最大行程/m 0.15
    俯仰通道滑块初始位置/m $ {\left[ {\begin{array}{*{20}{c}} {{\delta _x}}&{0.02}&{0.02} \end{array}} \right]^{\mathrm{T}}} $
    滚转通道滑块初始位置/m $ {\left[ {\begin{array}{*{20}{c}} {0.02}&{{\delta _y}}&{0.02} \end{array}} \right]^{\mathrm{T}}} $
    下载: 导出CSV
  • [1] SD A, JR A, AR B, et al. Configurations, flight mechanisms, and applications of unmanned aerial systems: A review[J]. Progress in Aerospace Sciences, 2020, 121: 100694. doi: 10.1016/j.paerosci.2020.100694
    [2] SHAKHATREH H, SAWALMEH A, AI-FUQAHA A, et al. Unmanned aerial vehicles: A survey on civil applications and key research challenges[J]. IEEE Access, 2018, 7: 48572-48634.
    [3] KANISTRAS K, MARTINS G, RUTHERFORD M J, et al. A survey of unmanned aerial vehicles (UAVs) for traffic monitoring[M]. Berlin: Springer Netherlands, 2015: 8-15.
    [4] TB A, JM A, RMA B, et al. On-board implementation and experimental validation of collaborative transportation of loads with multiple UAVs-science direct[J]. Aerospace Science and Technology, 2020, 107: 106284. doi: 10.1016/j.ast.2020.106284
    [5] ARIYIBI S O, TEKINAIP O. Quaternion-based nonlinear attitude control of quadrotor formations carrying a slung load[J]. Aerospace Science and Technology, 2020, 105(14): 105995.
    [6] VANDANIPOUR M, KHODABANEH M. Adaptive fractional order sliding mode control for a quadrotor with a varying load[J]. Aerospace Science and Technology, 2019, 86: 737-747. doi: 10.1016/j.ast.2019.01.053
    [7] TOTOKI H, OCHI Y, SATO M, et al. Design and testing of a low-order flight control system for quad-tilt-wing UAV[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2426-2433. doi: 10.2514/1.G001577
    [8] TRAN AT, SAKAMOTO N, SATO M, et al. Control augmentation system design for quad-tilt-wing unmanned aerial vehicle via robust output regulation method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 357-369. doi: 10.1109/TAES.2017.2650618
    [9] 李新凯, 张宏立, 范文慧. 非匹配扰动下变体无人机预设性能控制[J]. 航空学报, 2022, 43(2): 382-397. doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202031

    LI K X, ZHANG H L, FAN W H. Prescribed performance control for morphing aerospace vehicle under mismatched disturbances[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 382-397(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202031
    [10] ERTURK S, DASKIRAN O, DOGAN A. Trim analysis of a moving-mass actuated airplane[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2012: 4647.
    [11] ERTURK S, DOGAN A. Trim analysis of a moving-mass actuated airplane in steady turn[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: 0622.
    [12] ERTURK S, DOGAN A. Trim analyses of mass-actuated airplane in cruise and steady-state turn[J]. Journal of Aircraft, 2017, 54(4): 1587-1594. doi: 10.2514/1.C034200
    [13] ERTURK S, DOGAN A. Trim analyses of mass-actuated airplane in steady-state climb and descent[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2017: 1585.
    [14] 邱潇颀, 高长生, 荆武兴. 变质心固定翼无人机动力学分析与抗扰控制[J]. 北京航空航天大学学报, 2022, 48(3): 430-437.

    QIU X Q, GAO C S, JING W X. Dynamic analysis and disturbance rejection control of mass-actuated fixed-wing UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 430-437(in Chinese).
    [15] HAUS T, ORSAG M, BOGDAN S. Design considerations for a large quadrotor with moving mass control[C]//2016 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2016: 1327-1334.
    [16] DARVISHPOOR S, ROSHANIAN J, TAYEFI M. A novel concept of VTOL bi-rotor UAV based on moving mass control[J]. Aerospace Science and Technology, 2020, 107: 106238.
    [17] IDRISSI M, SALAMI M, ANNAZ F. Modelling, simulation and control of a novel structure varying quadrotor[J]. Aerospace Science and Technology, 2021, 119: 107093. doi: 10.1016/j.ast.2021.107093
    [18] 陆正亮. 快速机动卫星质量矩姿态控制技术研究[D]. 南京: 南京理工大学, 2018: 6-7.

    LU Z L. Study on mass moment attitude control for fast orbit maneuver satellite[D]. Nanjing: Nanjing University of Science and Technology, 2018: 6-7(in Chinese).
    [19] CHEN W H, BALLANCE D J. A nonlinear disturbance observer for robotic manipulators[J]. Industrial Electronics IEEE Transactions on Industrial Electronics, 2000, 47(4): 932-938. doi: 10.1109/41.857974
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  9
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-12
  • 录用日期:  2022-05-20
  • 网络出版日期:  2022-05-31
  • 整期出版日期:  2024-03-27

目录

    /

    返回文章
    返回
    常见问答