留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞机滑水安全的沥青道面积水评价指标

宗辉杭 李岳 蔡靖 戴轩

宗辉杭,李岳,蔡靖,等. 基于飞机滑水安全的沥青道面积水评价指标[J]. 北京航空航天大学学报,2024,50(3):765-773 doi: 10.13700/j.bh.1001-5965.2022.0352
引用本文: 宗辉杭,李岳,蔡靖,等. 基于飞机滑水安全的沥青道面积水评价指标[J]. 北京航空航天大学学报,2024,50(3):765-773 doi: 10.13700/j.bh.1001-5965.2022.0352
ZONG H H,LI Y,CAI J,et al. Evaluation index of accumulated water-film on asphalt pavement considering safety of aircraft hydroplaning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):765-773 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0352
Citation: ZONG H H,LI Y,CAI J,et al. Evaluation index of accumulated water-film on asphalt pavement considering safety of aircraft hydroplaning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):765-773 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0352

基于飞机滑水安全的沥青道面积水评价指标

doi: 10.13700/j.bh.1001-5965.2022.0352
基金项目: 中央高校基本科研业务费专项资金(3122019103)
详细信息
    通讯作者:

    E-mail:caijing75@163.com

  • 中图分类号: V351.11;U8

Evaluation index of accumulated water-film on asphalt pavement considering safety of aircraft hydroplaning

Funds: The Fundamental Research Funds for the Central Universities (3122019103)
More Information
  • 摘要:

    沥青道面积水深度受横坡与轮辙变形共同影响分布复杂,是诱发飞机轮胎滑水事故的重要条件。当前,仅针对飞机起降运行给出污染跑道积水厚度范围,积水评价方式与实际运行环境脱节。基于轮辙横断面变形特征分析,提出一种考察飞机轮载横向累积作用概率分布的当量水膜厚度(EWT)指标。根据道面不同区域积水条件,分段建立轮胎滑水仿真分析模型,探讨滑水行为差异及轮辙积水影响机理,验证EWT的合理性与适用范围。结果表明:轮辙内部积水引起局部水膜增厚,当飞机滑行经过时,积水侵入轮胎底部,轮胎前缘轮廓模糊且接地面积降低;当前分段临界滑水速度减小,降幅与轮载累积作用概率正相关;轮辙变形导致轮胎“最不利”滑行位置自跑道边缘向中心线内移;EWT对应表征安全接地宽度更大,覆盖轮载累积作用概率约为平均水膜厚度(AWT)的2倍,滑水风险指标仅为AWT的36%~81%。所提评价指标克服了最大水膜厚度(MWT)取值过于严格的缺陷,更适用于机场管理实践,可为起降条件保障和滑水风险分级提供量化参照。

     

  • 图 1  轮辙横断面曲线

    Figure 1.  Curves of rut deformation section

    图 2  分段道面轮胎滑水仿真分析模型

    Figure 2.  Simulation model of tire hydroplaning on segmented pavement

    图 3  道面划分与特征分段

    Figure 3.  Pavement division and feature segmentation

    图 4  道面积水横向分布

    Figure 4.  Lateral distribution of accumulated water-film on pavement

    图 5  滑水仿真分析模型验证

    Figure 5.  Validation of hydroplaning simulation model

    图 6  轮胎前缘流域分布

    Figure 6.  Watershed distribution at tire frontier

    图 7  临界滑水速度横向分布

    Figure 7.  Lateral distribution of critical hydroplaning speed

    图 8  带轮辙工作道面临界滑水速度分布

    Figure 8.  Critical hydroplanning speed distribution of pavement with rut deformation

    图 9  积水道面安全接地宽度

    Figure 9.  Safe grounding width on water-film pavement

    图 10  接地滑行速度累积分布函数

    Figure 10.  Cumulative distribution function of peak taxing speed

    表  1  轮胎模型几何及物理力学参数[19]

    Table  1.   Geometrical and physico-mechanical parameters of tire model[19]

    外径/cm 内径/cm 宽度/cm 胎压/kPa 轴载/kN 沟槽宽度/cm 沟槽深度/cm 橡胶正定常数
    C10/MPa
    橡胶正定常数
    C01/MPa
    橡胶不可
    压缩系数Q1
    116.8 50.8 43.2 1140 154.5 1.0 0.8 9.9 8.8 10−7
     注:橡胶材料参数匹配Mooney-Rivlin本构模型[20]
    下载: 导出CSV

    表  2  积水评价指标与临界滑水速度

    Table  2.   Water-film evaluation index and critical hydroplaning speed

    道面条件 dAWT/mm dMWT/mm dEWT/mm VpAWT/(km·h−1 VpMWT/(km·h−1 VpEWT/(km·h−1
    仅横坡道面 4.7 6.2 5.1 229.2 215.7 220.3
    轻微轮辙道面 5.9 11.6 10.0 217.5 207.5 209.8
    中等轮辙道面 6.9 18.5 16.0 212.6 195.5 199.2
    下载: 导出CSV

    表  3  安全接地宽度内轮载累积作用概率

    Table  3.   Cumulative probability of aircraft wheel load within safety grounding width %

    道面条件 αAWT αEWT αMWT
    仅横坡道面 58.5 92.4 98.3
    轻微轮辙道面 30.2 64.1 98.3
    中等轮辙道面 20.2 51.2 98.3
    下载: 导出CSV

    表  4  滑行速度峰值安全概率

    Table  4.   Safety probability of peak taxing speed %

    道面条件 βAWT βEWT βMWT
    仅横坡道面 80.8 61.6 44.8
    轻微轮辙道面 50.4 32.8 24.8
    中等轮辙道面 39.2 20.0 14.4
    下载: 导出CSV

    表  5  轮胎滑水风险指标

    Table  5.   Risk indicators of tire hydroplaning %

    道面条件 RAWT REWT RMWT
    仅横坡道面 8.0 2.9 0.1
    轻微轮辙道面 34.6 24.2 1.3
    中等轮辙道面 48.5 39.1 1.5
    下载: 导出CSV
  • [1] VAN ES G W H, ROELEN A L C, KRUIJSEN E A C, et al. Safety aspects of aircraft performance on wet and contaminated runways: NLR-TP-2001-216[R]. Amsterdam: NLR, 2001.
    [2] ZHANG Q Y, WU S X. Three-dimensional study on touch down zone of steel catenary riser under cyclic loading in saturated seabed[J]. Ocean Engineering, 2019, 190(15): 106411. doi: 10.1016/j.oceaneng.2019.106411
    [3] FWA T F, ONG G P. Wet-pavement hydroplaning risk and skid resistance: Analysis[J]. Journal of Transportation Engineering, 2008, 134(5): 182-190. doi: 10.1061/(ASCE)0733-947X(2008)134:5(182)
    [4] 燕姣, 李岩, 惠冰. 车辙断面非均匀积水对车辆安全性影响的仿真分析[J]. 汽车技术, 2019, 47(11): 47-51.

    YAN J, LI Y, HUI B. Simulation analysis of rutting section unevenness with respect to vehicle driving safety[J]. Automobile Technology, 2019, 47(11): 47-51(in Chinese).
    [5] 罗又元. 公路沥青路面车辙病害养护标准及养护对策研究[J]. 西部交通科技, 2019, 18(10): 61-63.

    LUO Y Y. Study on maintenance standard and maintenance countermeasures for rutting disease of highway asphalt pavement[J]. Western China Communications Science & Technology, 2019, 18(10): 61-63(in Chinese).
    [6] 侯相深, 马松林, 王彩霞. 基于行车安全的沥青路面车辙测量与评价指标的研究[J]. 公路交通科技, 2006, 23(8): 14-17.

    HOU X S, MA S L, WANG C X. Research on measurement and evaluation of asphalt pavement rutting based-on traffic safety[J]. Journal of Highway and Transportation Research and Development, 2006, 23(8): 14-17(in Chinese).
    [7] 徐世法. 沥青路面的车辙深度与行车安全性[J]. 北京建筑工程学院学报, 1994, 10(1): 47-51.

    XU S F. Pavement rutting depth related to vehicle travel safety[J]. Journal of Beijing Institute of Civil Engineering and Architecture, 1994, 10(1): 47-51(in Chinese).
    [8] 李岳, 赵夫朋, 蔡靖. 飞机轮载作用下轮辙断面特征与评价指标研究[J]. 中国民航大学学报, 2020, 38(3): 18-22.

    LI Y, ZHAO F P, CAI J. Rutting profile characteristics and evaluation indices under aircraft wheel load[J]. Journal of Civil Aviation University of China, 2020, 38(3): 18-22(in Chinese).
    [9] FWA T F, PASINDU H R, ONG G P. Critical rut depth for pavement maintenance based on vehicle skidding and hydroplaning consideration[J]. Journal of Transportation Engineering, 2012, 138(4): 423-429. doi: 10.1061/(ASCE)TE.1943-5436.0000336
    [10] YAN J, ZHANG H W, HUI B. Driving safety analysis using grid-based water-filled rut depth distribution[J]. Advances in Materials Science and Engineering, 2021, 2021: 5568949.
    [11] MAMLOUK M, VINAYAKAMURTHY M, UNDERWOOD B S, et al. Effects of the international roughness index and rut depth on crash rates[J]. Journal of the Transportation Research Board, 2018, 2672(40): 418-429. doi: 10.1177/0361198118781137
    [12] ZHU X Y, YANG Y, ZHAO H D, et al. Effects of surface texture deterioration and wet surface conditions on asphalt runway skid resistance[J]. Tribology International, 2021, 153(10): 106589. doi: 10.1016/j.triboint.2020.106589
    [13] 中国民用航空局. 航空承运人湿跑道和污染跑道运行管理规定: AC-121-FS-33R1[S]. 北京: 中国民用航空局, 2021.

    Civil Aviation Administration of China. Regulations for the management of wet runway and contaminated runway operation by air carriers: AC-121-FS-33R1[S]. Beijing: Civil Aviation Administration of China, 2021(in Chinese).
    [14] HAYHOE G F, GARG N, DONG M. Permanent deformations during traffic tests on flexible pavements at the national airport pavement test facility[C]//Proceedings of the Airfield Pavements specialty conference. Reston: ASCE Press, 2003: 147-169.
    [15] ONG G P, FWA T F. Wet-pavement hydroplaning risk and skid resistance: Modeling[J]. Journal of Transportation Engineering, 2007, 133(10): 590-598. doi: 10.1061/(ASCE)0733-947X(2007)133:10(590)
    [16] 李岳, 蔡靖, 宗一鸣. 湿滑道面飞机轮胎临界滑水速度数值仿真[J]. 交通运输工程学报, 2017, 17(5): 90-101.

    LI Y, CAI J, ZONG Y M. Numerical simulation of critical hydroplaning speed of aircraft tire under wet pavement condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 90-101(in Chinese).
    [17] 中国民用航空局. 民用机场道面评价管理技术规范: MH/T 5024—2019[S]. 北京:中国民航出版社,2019.

    Civil Aviation Administration of China. Specifications for pavement evaluation and management of civil airports: MH/T 5024—2019[S]. Beijing: China Civil Aviation Pubishing House, 2019(in Chinese).
    [18] 韩英锋. 基于降水强度的道面表面性能及滑水安全研究[D]. 天津: 中国民航大学, 2021: 22-30.

    HAN Y F. Study on pavement surface performance and water skiing safety based on precipitation intensity[D]. Tianjin: Civil Aviation University of China, 2021: 22-30(in Chinese).
    [19] 许诤. 考虑道面平整度的飞机轮胎滑水安全问题研究[D]. 天津: 中国民航大学, 2019: 26-27.

    XU Z. Safety research of hydroplaning of aircraft tire considering roughness quality of pavement[D]. Tianjin: Civil Aviation University of China, 2019: 26-27(in Chinese).
    [20] 蔡靖, 李岳, 宗一鸣. 湿滑道面飞机轮胎临界滑水速度计算方法比较[J]. 航空学报, 2017, 38(7): 220798.

    CAI J, LI Y, ZONG Y M. Comparasion of prediction methods for critical hydroplaning speed of aircraft tire on wet pavement[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 220798(in Chinese).
    [21] 倪明. 大型客机污染跑道起降性能适航审定方法研究[D].南京:南京航空航天大学,2019:36-37.

    NI M.Study on airworthiness certification method of large passenger aircraft taking off and landing on polluted runway[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 36-37(in Chinese).
    [22] HORNE W B, DREHER R C. Phenomena of pneumatic tire hydroplaning: NASA TN D-2056[R]. Washington, D. C. : NASA, 1963: 3-17.
    [23] 雷电, 赵鸿铎, 吴璨. 飞机轮迹横向分布测试系统的比选分析[J]. 西部交通科技, 2012(10): 63-68.

    LEI D, ZHAO H D, WU C. The analysis and selection for aircraft deviation test system[J]. Western China Communication Science & Technology, 2012(10): 63-68(in Chinese).
    [24] HOSANG V A. Field survey and analysis of aircraft distribution on airport pavements: 113286686[R]. Washington, D.C.: FAA, 1978: 84-86.
    [25] 李岳, 胡宇祺, 蔡靖, 等. 湿滑道面飞机着陆滑水风险量化分析[J]. 南京航空航天大学学报, 2022, 54(6): 1138-1144.

    LI Y, HU Y Q, CAI J, et al. Quantitative analysis of water-skiing risk for aircraft landing on wet skid surface[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2022, 54(6): 1138-1144(in Chinese).
    [26] KANG Y S, NAZARI A, CHEN L, et al. A probabilistic approach to hydroplaning potential and risk[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2019, 12(1): 63-70. doi: 10.4271/06-12-01-0005
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  4
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-12
  • 录用日期:  2022-06-11
  • 网络出版日期:  2022-06-27
  • 整期出版日期:  2024-03-27

目录

    /

    返回文章
    返回
    常见问答