留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模型预测控制算法的精确着舰控制方法

万兵 苏析超 汪节 韩维 李常久

万兵,苏析超,汪节,等. 基于模型预测控制算法的精确着舰控制方法[J]. 北京航空航天大学学报,2024,50(4):1197-1207 doi: 10.13700/j.bh.1001-5965.2022.0383
引用本文: 万兵,苏析超,汪节,等. 基于模型预测控制算法的精确着舰控制方法[J]. 北京航空航天大学学报,2024,50(4):1197-1207 doi: 10.13700/j.bh.1001-5965.2022.0383
WAN B,SU X C,WANG J,et al. A precise landing control method based on model predictive control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1197-1207 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0383
Citation: WAN B,SU X C,WANG J,et al. A precise landing control method based on model predictive control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1197-1207 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0383

基于模型预测控制算法的精确着舰控制方法

doi: 10.13700/j.bh.1001-5965.2022.0383
详细信息
    通讯作者:

    E-mail:suxich@126.com

  • 中图分类号: V249;TP273

A precise landing control method based on model predictive control algorithm

More Information
  • 摘要:

    针对舰载机着舰过程中的航母运动、舰尾流扰动等影响,提出一种基于模型预测控制-线性二次型高斯(MPC-LQG)算法的精确着舰控制方法,开展飞机纵向通道的精确着舰控制研究。对飞机纵向动力学、舰尾流、航母运动、轨迹跟踪等,进行建模和分析。对MPC-LQG算法进行融合,以实现轨迹跟踪控制,核心思想是:模型预测控制进行航母运动补偿;设计全维状态观测,实现全状态反馈,以实现最优着舰控制。对不同的着舰情况和初始条件进行算法仿真,并与其他算法进行仿真比较。仿真结果表明,所提方法的轨迹跟踪效果很好,高度偏差0.1~0.2 m;相比传统着舰控制,所提方法动态响应快、着舰精度高。

     

  • 图 1  由进近窗进入下滑着舰阶段

    Figure 1.  Transition from approach phase into glide landing phase

    图 2  甲板运动信息的模拟

    Figure 2.  Simulation of deck motion information

    图 3  甲板运动信息的模拟

    Figure 3.  Simulation of deck motion data

    图 4  ITP的纵向、侧向及高度变化

    Figure 4.  Longitudinal, lateral and height variations of ITP

    图 5  着舰引导轨迹设计示意图

    Figure 5.  Schematic diagram of guidance trajectory design

    图 6  MPC算法的时间序列图

    Figure 6.  Time series diagram of MPC algorithm

    图 7  轨迹跟踪着舰终端示意图

    Figure 7.  Schematic diagram of landing terminal for trajectory tracking

    图 8  跟踪控制算法流程

    Figure 8.  Flow of tracking control algorithm

    图 9  舰载机着舰中受到的舰尾流干扰

    Figure 9.  Carrier wake interference to aircraft in landing

    图 10  轨迹精确跟踪效果

    Figure 10.  Precise trajectory tracking results

    图 11  着舰过程相关变量变化情况

    Figure 11.  Changes in state and input quantities during landing process

    图 12  不同初始高度下舰载机的着舰轨迹及其偏差值

    Figure 12.  Landing trajectories and their deviation values at different initial heights

    图 13  不同控制方法下舰载机的着舰轨迹跟踪及偏差

    Figure 13.  Landing tracking trajectories and deviations with different control methods

    表  1  操纵量约束情况

    Table  1.   Constraints of carrier aircraft control system

    控制变量 变量范围/(°) 配平值/(°) 速率范围/((゜)·s−1
    $ {\delta _{\rm{e}}} $ [−24, 10.5] −11.9 40
    $ {\delta _{{\rm{Lef}}}} $ [−3, 33] +17.6 15
    $ {\delta _T} $ [0, 57.3] 14.6 32
    下载: 导出CSV
  • [1] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2): 020435.

    ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 020435(in Chinese).
    [2] 段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J]. 航空学报, 2019, 40(4): 622328.

    DUAN Z Y, WANG W, GENG J Z, et al. Precision trajectory manual control technologies for carrier-based aircraft approaching and landing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 622328(in Chinese).
    [3] 江驹, 王新华, 甄子洋, 等. 舰载机起飞着舰引导与控制[M]. 北京: 科学出版社, 2019.

    JIANG J, WANG X H, ZHEN Z Y, et al. Carrier aircraft takeoff and landing guidance and control[M]. Beijing: Science Press, 2019(in Chinese).
    [4] MENG Y, WANG W, HAN H, et al. A visual/inertial integrated landing guidance method for UAV landing on the ship[J]. Aerospace Science and Technology, 2019, 85(2): 474-80.
    [5] WILKINSON C, FINDLAY D, NICHOLS J, et al. Shipboard aircraft simulation with ship-relative navigation sensor modeling[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: 1769.
    [6] DING Z, LI K, MENG Y, et al. FLIR/INS/RA Integrated Landing Guidance for Landing on Aircraft Carrier[J]. International Journal of Advanced Robotic Systems, 2015, 12(5): 1-9.
    [7] SEDLMAIR N, THEIS J, THIELECKE F. Flight testing automatic landing control for unmanned aircraft including curved approaches[J]. Journal of Guidance, Control, and Dynamics, 2021, 11: 1-36.
    [8] GUAN Z, LIU H, ZHENG Z, et al. Moving path following with integrated direct lift control for carrier landing[J]. Aerospace Science and Technology, 2022, 120: 107247. doi: 10.1016/j.ast.2021.107247
    [9] DENG Y, DUAN H. Control parameter design for automatic carrier landing system via pigeon-inspired optimization[J]. Nonlinear Dynamics, 2016, 85(1): 97-106. doi: 10.1007/s11071-016-2670-z
    [10] YANG Z, DUAN H, FAN Y, et al. Automatic carrier landing system multilayer parameter design based on cauchy mutation pigeon-inspired optimization[J]. Aerospace Science and Technology, 2018, 79: 518-530. doi: 10.1016/j.ast.2018.06.013
    [11] ZHU Q, YANG Z. Design of air-wake rejection control for longitudinal automatic carrier landing cyber-physical system[J]. Computers & Electrical Engineering, 2020, 84: 106637.
    [12] WANG L, ZHANG Z, ZHU Q, et al. Longitudinal automatic carrier landing system guidance law using model predictive control with an additional landing risk term[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(3): 1089-1105. doi: 10.1177/0954410017746432
    [13] KOO S, KIM S, SUK J. Model predictive control for UAV automatic landing on moving carrier deck with heave motion[J]. IFAC, 2015, 48(5): 59-64.
    [14] 张杨, 吴文海, 汪杰, 等. 舰载无人机横侧向着舰控制律设计[J]. 航空学报, 2017, 38(S1): 721489.

    ZHANG Y, WU W H, WANG J. Design of carrier UAV lateral/ directional landing control law[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 721489(in Chinese).
    [15] 吴文海, 张杨, 胡云安, 等. 舰载机着舰非线性反演控制方法研究进展[J]. 系统工程与电子技术, 2018, 40(7): 1578-1587. doi: 10.3969/j.issn.1001-506X.2018.07.24

    WU W H, ZHANG Y, HU Y A, et al. Research development in nonlinear backstepping control method of carrier-based aircraft landing[J]. Systems Engineering and Electronics, 2018, 40(7): 1578-1587(in Chinese). doi: 10.3969/j.issn.1001-506X.2018.07.24
    [16] SUBRAHMANYAM M B. H-infinity design of F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1): 187-91. doi: 10.2514/3.21177
    [17] HANSON C, SCHAEFER J, JOHNSON M. Design of low complexity model reference adaptive controllers[J]. NASA/TM, 2012, 215972.
    [18] LORENZETTI R C, NELSEN G L, JOHNSON R W. Direct lift control for approach and landing[J]. Journal of Aircraft, 1969, 6(3): 240-244. doi: 10.2514/3.44042
    [19] NASTASI R, MARTORELLA P, HUFF R, et al. Carrier landing simulation results of precision flight path controllers in manual and automatic approach[C]//Proceedings of the 10th Atmospheric Flight Mechanics Conference. 1983: 2072.
    [20] DENHAM J W. Project MAGIC CARPET: Advanced Controls and Displays for Precision Carrier Landings[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016, 1770.
    [21] 张志冰, 张秀林, 王家兴, 等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报, 2021, 42(8): 142-157. doi: 10.7527/S1000-6893.2021.25840

    ZHANG Z B, ZHANG X L, WANG J X, et al. An IDLC landing control method of carrier-based aircraft based on control allocation of multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 142-157(in Chinese). doi: 10.7527/S1000-6893.2021.25840
    [22] DURHAM W, BORDIGNON K, BECK R. Aircraft control allocation[M]. Chichester: John Wiley and Sons Ltd, 2016.
    [23] 高强, 谭述君, 钟万勰. 精细积分方法研究综述[J]. 中国科学:技术科学, 2016, 12: 5-16.

    GAO Q, TAN S J, ZHONG W X. A survey of the precise integration method[J]. Scientia Sinica Technologica, 2016, 12: 5-16(in Chinese).
    [24] STEVENS B, LEWIS F, JOHNSON E N. Aircraft control and simulation: Dynamics, controls design, and autonomous systems[M]. 3rh ed. Chichester: John Wiley and Sons Ltd, 2017.
    [25] Flying qualities of piloted aircraft:mil-std-1797. (Revision B Notice 1-Administrative)[S]. Washington D.C.: United States Department of Defense, 2012.
    [26] DURAND T S, WASICKO R J. Factors influencing glide path control in carrier landing[J]. Journal of Aircraft, 1971, 4(2): 146-158.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  671
  • HTML全文浏览量:  85
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 录用日期:  2022-07-17
  • 网络出版日期:  2022-08-09
  • 整期出版日期:  2024-04-29

目录

    /

    返回文章
    返回
    常见问答