留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于顶点与主体区域同步检测的精准车牌定位

徐光柱 刘高飞 匡婉 万秋波 马国亮 雷帮军

徐光柱,刘高飞,匡婉,等. 基于顶点与主体区域同步检测的精准车牌定位[J]. 北京航空航天大学学报,2024,50(2):376-387 doi: 10.13700/j.bh.1001-5965.2022.0396
引用本文: 徐光柱,刘高飞,匡婉,等. 基于顶点与主体区域同步检测的精准车牌定位[J]. 北京航空航天大学学报,2024,50(2):376-387 doi: 10.13700/j.bh.1001-5965.2022.0396
XU G Z,LIU G F,KUANG W,et al. Accurate license plate location based on synchronous vertex and body region detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):376-387 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0396
Citation: XU G Z,LIU G F,KUANG W,et al. Accurate license plate location based on synchronous vertex and body region detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):376-387 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0396

基于顶点与主体区域同步检测的精准车牌定位

doi: 10.13700/j.bh.1001-5965.2022.0396
基金项目: 湖北省中央引导地方科技发展专项(2019ZYYD007);湖北省水电工程智能视觉监测重点实验室开放基金(2022SDSJ03)
详细信息
    通讯作者:

    E-mail:Bangjun.Lei@ieee.org

  • 中图分类号: TP391

Accurate license plate location based on synchronous vertex and body region detection

Funds: Hubei Provincial Central Leading Local Science and Technology Development Special Project (2019ZYYD007); Funds of Hubei Key Laboratory of Intelligent Vision Monitoring for Hydropower Engineering (2022SDSJ03)
More Information
  • 摘要:

    为应对非约束环境下的车牌精定位问题,提出一种基于顶点局部区域与主体区域同步检测策略的非约束性车牌定位算法。通过删减YOLOv5网络的输出结构,训练得到可同步检测车牌及顶点区域的车牌检测网络,在兼顾精度与计算速度的前提下,实现车牌顶点和主体区域的同步定位。针对一幅图中存在多个车牌区域及顶点区域存在少量漏检和误检的情况,分别设计了车牌顶点归类和单一缺失顶点预测后处理算法,借助顶点间的空间位置关系进行漏检目标预测和误检目标排查,有效改善了因场景复杂导致的个别顶点目标检测效果差的问题。所提算法在中国城市停车场数据集(CCPD)上的测试结果显示,平均精准率达99.25%,平均召回率达98.70%。所提算法不仅能够准确预测出车牌的4个顶点坐标,而且在中端GPU硬件平台上处理速度可达121帧/s,具有较好的应用价值。

     

  • 图 1  本文采用的双检测头YOLOv5网络结构

    Figure 1.  Structure of dual-head YOLOv5 network used in this paper

    图 2  系统示意图

    Figure 2.  System schematic diagram

    图 3  车牌顶点区域与车牌区域的空间位置关系

    Figure 3.  Spatial position relationship between vertex regions and license plate

    图 4  车牌顶点区域图例

    Figure 4.  Instances of license plate vertex region

    图 5  后处理流程

    Figure 5.  Post-processing flow

    图 6  车牌顶点归类图例

    Figure 6.  License plate vertexes grouping instances

    图 7  车牌顶点归类流程

    Figure 7.  License plate vertexes grouping flow

    图 8  单一缺失顶点预测图示

    Figure 8.  Prediction illustration for single vertex missing cases

    图 9  图像扩展方式

    Figure 9.  Image expansion method

    图 10  车牌标签可视化示例

    Figure 10.  Visualization instances of license plate labels

    图 11  精准定位的车牌示例

    Figure 11.  Accurate license plate location instances

    图 12  单一缺失顶点时的预测示例

    Figure 12.  Prediction instances in cases of single vertex missing

    图 13  交并比计算方式

    Figure 13.  IOU calculation method

    图 14  PKU数据集车牌定位示例

    Figure 14.  License plate location instances in PKU dataset

    图 15  DB场景中的漏检与误检示例

    Figure 15.  False and missing detection instances in DB sub-dataset

    图 16  车牌与背景颜色相似情况的检测示例

    Figure 16.  Instances of detection of license plate with similar background color

    图 17  光照不佳情况的检测示例

    Figure 17.  Instances with poor illumination

    图 18  车牌模糊情况的检测示例

    Figure 18.  Instances with fuzzy license plate images

    图 19  车牌倾斜角度大时的检测示例

    Figure 19.  Instances with tilted license plate images

    图 20  极端条件导致的误检情况示例

    Figure 20.  False detection instances under some extreme scenarios

    图 21  标签错误导致的误判示例

    Figure 21.  Misjudgment instances caused by false labels

    表  1  模型训练参数

    Table  1.   Model training parameters

    参数 数值
    批次 16
    类别数 5
    学习率 0.01
    动量 0.937
    迭代次数 150
    输入宽高 (640,640)
    锚框宽高(6个) (66,64), (123,49), (84,83),
    (100,99), (176,68), (124,123)
    下载: 导出CSV

    表  2  不同算法在各子集下的定位准确率

    Table  2.   Location accuracy of different algorithms under various subset

    算法 平均精准率/% 检测速度/(帧·s−1) 准确率/%
    Base Challenge DB FN Rotate Tilt Weather Blur
    YOLO9000[26] 93.10 42 98.80 88.60 89.60 77.30 93.30 91.80 84.20
    RPNet[5] 94.50 61 99.30 92.80 89.50 85.30 94.70 93.20 84.10
    YOLOv3[16] 98.24 52 99.94 97.72 94.35 91.04 97.87 99.00 99.73 98.60
    ResNet-50[25] 97.80 26 99.70 93.50 92.70 94.50 98.50 96.20 99.10
    ILPRNET+YOLOv3[27] 96.00 52 97.10 90.50 97.20 93.30 91.60 94.60 97.90
    LPDR-RSCNet[23] 98.00 34 99.00 90.40 98.80 94.30 98.90 99.10 99.40
    MTLPR[11] 97.70 65
    YOLOv3(结合后处理) 99.20 49 99.99 98.70 96.91 97.44 99.29 99.37 99.96 98.83
    本文算法(E) 99.16 100 99.99 98.60 96.61 97.42 99.31 99.36 99.96 98.69
    本文算法(F) 99.26 97 99.99 98.78 97.30 97.49 99.32 99.42 99.97 98.96
    本文算法(G) 99.10 126 99.98 98.56 96.43 97.29 99.30 99.28 99.96 98.43
    本文算法(H) 99.25 121 99.99 98.75 97.10 97.64 99.33 99.39 99.98 98.88
    下载: 导出CSV

    表  3  不同算法在PKU数据集上的定位准确率

    Table  3.   Location accuracy of different algorithms on PKU dataset

    算法 平均精准率/% 检测速度/(帧·s−1) 准确率/%
    G1 G2 G3 G4 G5
    文献[28] 91.52 672 98.89 98.42 95.83 81.17 83.31
    文献[29] 97.69 42 98.76 98.42 97.72 96.23 97.32
    文献[25] 99.80 21 99.75 100 99.73 99.65 99.65
    本文算法 99.84 100 100 100 100 100 99.23
    下载: 导出CSV
  • [1] JAMTSHO Y, RIYAMONGKOL P, WARANUSAST R. Real-time license plate detection for non-helmeted motorcyclist using YOLO[J]. ICT Express, 2021, 7(1): 104-109. doi: 10.1016/j.icte.2020.07.008
    [2] HUANG Q, CAI Z, LAN T. A single neural network for mixed style license plate detection and recognition[J]. IEEE Access, 2021, 9: 21777-21785. doi: 10.1109/ACCESS.2021.3055243
    [3] 曾丽华, 李超, 熊璋. 基于边缘与颜色信息的车牌精确定位算法[J]. 北京航空航天大学学报, 2007, 33(9): 1112-1116. doi: 10.3969/j.issn.1001-5965.2007.09.026

    ZENG L H, LI C, XIONG Z. Precisely license plate locating algorithm based on edge and color information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9): 1112-1116(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.09.026
    [4] CHEN J I Z, ZONG J I. Automatic vehicle license plate detection using K-means clustering algorithm and CNN[J]. Journal of Electrical Engineering and Automation, 2021, 3(1): 15-23. doi: 10.36548/jeea.2021.1.002
    [5] XU Z B, YANG W, MENG A J, et al. Towards end-to-end license plate detection and recognition: A large dataset and baseline[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 255-271.
    [6] SILVA S M, JUNG C R. License plate detection and recognition in unconstrained scenarios[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 580-596.
    [7] SELMI Z, HALIMA M B, PAL U, et al. DELP-DAR system for license plate detection and recognition[J]. Pattern Recognition Letters, 2019, 129: 213-223.
    [8] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397. doi: 10.1109/TPAMI.2018.2844175
    [9] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1-9.
    [10] CHEN L S, TIAN S, MA W J, et al. End-to-end trainable network for degraded license plate detection via vehicle-plate relation mining[J]. Neurocomputing, 2021, 446: 1-10. doi: 10.1016/j.neucom.2021.03.040
    [11] WANG W, YANG J, CHEN M, et al. A light CNN for end-to-end car license plates detection and recognition[J]. IEEE Access, 2019, 7: 173875-173883. doi: 10.1109/ACCESS.2019.2956357
    [12] YIN X, LIU X. Multi-task convolutional neural network for pose-invariant face recognition[J]. IEEE Transactions on Image Processing, 2017, 27(2): 964-975.
    [13] WANG Y, BIAN Z P, ZHOU Y, et al. Rethinking and designing a high-performing automatic license Plate recognition approach[EB/OL]. (2021-06-17) [2022-05-20]. https://arxiv.org/abs/2011.14936.
    [14] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 2117-2125.
    [15] Ultralytics. YOLOv5[EB/OL]. (2022-05-12) [2022-05-20]. https://github.com/ultralytics/yolov5.
    [16] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08) [2022-05-20]. https://arxiv.org/abs/1804.02767.
    [17] ALEXEY B, WANG C Y, LIAO H. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-05-20]. https://arxiv.org/abs/2004.10934v1.
    [18] WANG C Y, LIAO H, YEH I H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[EB/OL]. (2019-11-27) [2022-05-20].https://arxiv.org/abs/1911.11929.
    [19] HE K M, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
    [20] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[EB/OL]. (2018-03-05) [2022-05-20]. https://arxiv.org/abs/1803.01534.
    [21] LOSHCHILOV I, HUTTER F. SGDR: Stochastic gradient descent with warm restarts[EB/OL]. (2016-08-13) [2022-05-20]. https://arxiv.org/abs/1608.03983.
    [22] 徐光柱, 匡婉, 李兴维, 等. YOLOv3与顶点偏移估计相结合的车牌定位[J]. 计算机辅助设计与图形学学报, 2021, 33(4): 569-579.

    XU G Z, KUANG W, LI X W, et al. License plate location based on YOLOv3 and vertex offset estimation[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(4): 569-579(in Chinese).
    [23] 唐倩, 贺伟, 张林江. 基于空间转换网络的端到端车牌检测与识别[J]. 光电子·激光, 2021, 32(5): 524-531. doi: 10.16136/j.joel.2021.05.0423

    TANG Q, HE W, ZHANG L J. End to end license plate detection and recognition based on spatial transformer network[J]. Journal of Optoelectronics·Laser, 2021, 32(5): 524-531(in Chinese). doi: 10.16136/j.joel.2021.05.0423
    [24] QIN S S, LIU S J. Towards end-to-end car license plate location and recognition in unconstrained scenarios[EB/OL]. (2020-08-25) [2022-05-20]. https://arxiv.org/abs/2008.10916.
    [25] SILVA S M, JUNG C R. A flexible approach for automatic license plate recognition in unconstrained scenarios[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(6): 5693-5703.
    [26] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 7263-7271.
    [27] ZOU Y, ZHANG Y, YAN J, et al. License plate detection and recognition based on YOLOv3 and ILPRNET[J]. Signal Image and Video Processing, 2021, 9: 312-320.
    [28] LI B, TIAN B, LI Y, et al. Component-based license plate detection using conditional random field model[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1690-1699.
    [29] YUAN Y, ZOU W, ZHAO Y, et al. A robust and efficient approach to license plate detection[J]. IEEE Transactions on Image Processing, 2016, 26(3): 1102-1114.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  793
  • HTML全文浏览量:  111
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 录用日期:  2022-07-02
  • 网络出版日期:  2022-11-02
  • 整期出版日期:  2024-02-27

目录

    /

    返回文章
    返回
    常见问答