留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进反激拓扑模式下远端稳压电源控制方案

张帅 韩小文 李儒鹏 程鹏 李正天 王玉姣

张帅,韩小文,李儒鹏,等. 改进反激拓扑模式下远端稳压电源控制方案[J]. 北京航空航天大学学报,2024,50(4):1229-1239 doi: 10.13700/j.bh.1001-5965.2022.0458
引用本文: 张帅,韩小文,李儒鹏,等. 改进反激拓扑模式下远端稳压电源控制方案[J]. 北京航空航天大学学报,2024,50(4):1229-1239 doi: 10.13700/j.bh.1001-5965.2022.0458
ZHANG S,HAN X W,LI R P,et al. Improved remote regulated power supply control scheme in improved flyback converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1229-1239 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0458
Citation: ZHANG S,HAN X W,LI R P,et al. Improved remote regulated power supply control scheme in improved flyback converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1229-1239 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0458

改进反激拓扑模式下远端稳压电源控制方案

doi: 10.13700/j.bh.1001-5965.2022.0458
详细信息
    通讯作者:

    E-mail:2569119978@qq.com

  • 中图分类号: TP273.4

Improved remote regulated power supply control scheme in improved flyback converter

More Information
  • 摘要:

    为提高远端稳压电源的供电质量,最大限度的在高可靠性前提下保证发射设备输出电压快速、平稳地达到设定值,提出一种改进反激拓扑模式下远端稳压电源设计方式,并建立相应数学模型。设计了前置论域整定的模糊比例积分微分(PID)控制算法,通过论域整定模型将模糊PID参数直接映射到模糊规则下,消除试凑法偶然性的同时消除了量化因子对误差的放大作用,有效地避免了过度调整的现象;引用模糊逻辑来实时处理远端稳压电源的动态参量值,并根据反模糊映射函数将生成的量化值映射到控制元件。仿真环境模拟结果表明:与模糊PID控制相比,前置论域整定的模糊PID控制算法具有优良稳态性能,调节时间缩短48.1%,响应时间缩短了28.6%并降低到1.4 ms;与此同时,该控制方案能够有效地抵抗突发性干扰,稳压输出时间缩短了45.5%,响应时间缩短到37.5%。实验结果表明:前置整定模糊PID控制算法可以运用到实际工业环境中,与工业环境下传统控制算法比,前置整定模糊PID控制算法可以大幅提高远端稳压电源的供电质量,具备优良的鲁棒性。

     

  • 图 1  改进反激拓扑模式下远端稳压电源工作原理

    Figure 1.  Working principle diagram of remote regulated power supply in improved flyback topology mode

    图 2  远端稳压电源简化电路模型

    Figure 2.  Remote regulated power supply simplified version control block diagram

    图 3  开关器件的平均化等效模型

    Figure 3.  Averaged equivalent model for switching devices

    图 4  主电路等效小信号模型

    Figure 4.  Equivalent small signal model of main circuit

    图 5  前置论域整定的模糊PID控制原理模型

    Figure 5.  Fuzzy PID control model diagram of pre-universal domain rectification

    图 6  经典模糊PID控制模型

    Figure 6.  Classical fuzzy PID control model diagram

    图 7  输入量隶属函数

    Figure 7.  Input membership function

    图 8  控制参数输入输出关系

    Figure 8.  Control parameter input and output relationship graphs

    图 9  前置整定过程SIMULINK仿真模型

    Figure 9.  SIMULINK simulation model diagram of pre-tuning process

    图 10  前置整定模糊PID算法SIMULINK仿真模型

    Figure 10.  Pre-tuning fuzzy PID algorithm SIMULINK simulation model diagram

    图 11  不同控制策略下仿真曲线

    Figure 11.  Simulation curves under different control strategies

    图 12  前置参数整定的模糊PID控制算法线路连接示意

    Figure 12.  Schematic diagram of circuit connection of fuzzy PID control algorithm for pre-parameter tuning

    图 13  电源模块软件PID输出控制流程

    Figure 13.  Power module software PID output control process

    图 14  FLASH内实时监测远端电压值

    Figure 14.  Real-time monitoring of remote voltage value in FLASH

    图 15  远端输出电压变化趋势

    Figure 15.  Remote output voltage change trend diagram

    表  2  积分因子Ki的模糊规则

    Table  2.   Fuzzy control of integral factor Ki

    e(t) ec[de(t)/dt]
    NB NM NS ZE PS PM PB
    NB NB NB NM NM NS ZE ZE
    NM NB NB NM NS NS ZE ZE
    NS NB NM NS NS ZE PS PS
    ZE NM NM NS ZE PS PM PM
    PS NM NS ZE PS PS PM PB
    PM ZE ZE PS PS PM PB PB
    PB ZE ZE PS PM PM PB PB
    下载: 导出CSV

    表  1  比例因子Kp的模糊规则

    Table  1.   Fuzzy control of proportional factor Kp

    e(t) ec[de(t)/dt]
    NB NM NS ZE PS PM PB
    NB PB PB PM PM PS ZE ZE
    NM PB PB PM PS PS ZE ZE
    NS PM PM PM PM ZE NS NS
    ZE PM PM PS NS NS NM NM
    PS PS PS ZE NS NS NM NM
    PM PS ZE NS NM NM NM NB
    PB ZE ZE NM NM NM NB NB
    下载: 导出CSV

    表  3  微分因子Kd的模糊规则

    Table  3.   Fuzzy control of derivative factor Kd

    e(t) ec[de(t)/dt]
    NB NM NS ZE PS PM PB
    NB PS NS NB NB NB NM PS
    NM PS NS NB NB NB NM PS
    NS ZE NS NS NS NS NS ZE
    ZE ZE NS NS NS NS NS ZE
    PS ZE ZE ZE ZE ZE ZE ZE
    PM PB NS PS PS PS PS PB
    PB PB PM PM PM PS PS PB
    下载: 导出CSV

    表  4  前置整定模糊PID算法仿真数据

    Table  4.   Pre-tuned fuzzy PID algorithm simulation data

    仿真方式 控制策略 最大超调量/
    %
    上升时间/
    ms
    调节时间/
    ms
    28 V稳定仿真 前置整定的
    模糊PID控制
    17.50 0.5 1.4
    模糊PID控制 21.25 0.7 2.7
    PID控制 23.36 0.9 3.0
    系统扰动状态 前置整定的
    模糊PID控制
    4.80 0.5 1.2
    模糊PID控制 4.90 0.8 2.2
    PID控制 6.20 1.0 3.0
    下载: 导出CSV

    表  5  前置整定模糊PID算法实验数据

    Table  5.   Pre-tuned fuzzy PID algorithm simulation data

    控制策略最大超调量/%上升时间/ms调节时间/ms
    前置整定的模糊PID控制2.530.50.6
    模糊PID控制2.861.01.4
    下载: 导出CSV
  • [1] 孙艳秋, 吴庆军, 张硕, 等. 面向零窗口发射的全冗余一体化测发控系统[J]. 导弹与航天运载技术, 2022(1): 53-58.

    SUN Y Q, WU Q J, ZHANG S, et al. Integrated measurement control and launch system with full redundancy for zero-window launching[J]. Missiles and Space Vehicles, 2022(1): 53-58 (in Chinese).
    [2] 孙志群, 李强, 袁卫, 等. 路面激励对火箭炮行进间发射控制的影响研究[J]. 兵器装备工程学报, 2021, 42(4): 37-41. doi: 10.11809/bqzbgcxb2021.04.007

    SUN Z Q, LI Q, YUAN W, et al. Study on effect of road excitation on rocket launch control between travels[J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 37-41 (in Chinese). doi: 10.11809/bqzbgcxb2021.04.007
    [3] 周逢道, 王爽, 赵心晖, 等. 高精度同步输出多功能发射控制技术[J]. 中南大学学报(自然科学版), 2016, 47(8): 2636-2642.

    ZHOU F D, WANG S, ZHAO X H, et al. Multifunctional transmitter control technology with high-precision synchronization output[J]. Journal of Central South University (Science and Technology), 2016, 47(8): 2636-2642 (in Chinese).
    [4] 陈朋, 毛待春, 陈思逾, 等. 基于反激拓扑与RC隔离触发网络的短弧脉冲氙灯电源设计[J]. 强激光与粒子束, 2021, 33(3): 123-131. doi: 10.11884/HPLPB202133.200316

    CHEN P, MAO D C, CHEN S Y, et al. Design of short-arc xenon flashlamp power supply based on flyback topology and RC isolation trigger network[J]. High Power Laser and Particle Beams, 2021, 33(3): 123-131 (in Chinese). doi: 10.11884/HPLPB202133.200316
    [5] 冯丹, 任宏滨, 李伟伟, 等. 反激式开关电源控制系统小信号模型[J]. 探测与控制学报, 2015, 37(5): 89-93.

    FENG D, REN H B, LI W W, et al. Small signal model of flyback switching power supply control system[J]. Journal of Detection & Control, 2015, 37(5): 89-93 (in Chinese).
    [6] 唐潇, 孙文杰, 何明祖, 等. 双极性直线型变压器驱动源的研制[J]. 强激光与粒子束, 2021, 33(6): 36-43.

    TANG X, SUN W J, HE M Z, et al. A bipolar nanosecond pulse source based on liner transformer driver[J]. High Power Laser and Particle Beams, 2021, 33(6): 36-43 (in Chinese).
    [7] 袁义生, 赖立. 一种多模式电流馈LCL谐振变换器[J]. 中国电机工程学报, 2020, 40(10): 3259-3270.

    YUAN Y S, LAI L. A Multi-mode current-fed LCL resonant converter[J]. Proceedings of the CSEE, 2020, 40(10): 3259-3270 (in Chinese).
    [8] 张峰, 谢运祥, 胡炎申, 等. 临界模式混合光伏微型逆变器的特性分析[J]. 电工技术学报, 2020, 35(6): 1290-1302.

    ZHANG F, XIE Y X, HU Y S, et al. Characteristics analysis for a boundary conduction mode hybrid-type photovoltaic micro-inverter[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1290-1302 (in Chinese).
    [9] 王凤国, 陈小雷, 许宝立, 等. 一种稳压电源远端供电电压补偿方法设计[J]. 电子器件, 2019, 42(4): 827-831. doi: 10.3969/j.issn.1005-9490.2019.04.004

    WANG F G, CHEN X L, XU B L, et al. Design of compensation method for remote power supply voltage of regulated power supply[J]. Journal of Electron Devices, 2019, 42(4): 827-831 (in Chinese). doi: 10.3969/j.issn.1005-9490.2019.04.004
    [10] 孙凤, 张琪, 徐方超, 等. 激光光路控制电磁作动器的模糊PID控制特性分析[J]. 兵工学报, 2019, 40(2): 430-441. doi: 10.3969/j.issn.1000-1093.2019.02.024

    SUN F, ZHANG Q, XU F C, et al. Analysis of fuzzy PID control characteristics on electromagnetic actuator for laser optical path control[J]. Acta Armamentarii, 2019, 40(2): 430-441 (in Chinese). doi: 10.3969/j.issn.1000-1093.2019.02.024
    [11] 陈帅, 汪成文, 张震阳, 等. 改进模糊PID方法及其在电液伺服控制中的应用[J]. 机电工程, 2021, 38(5): 559-565. doi: 10.3969/j.issn.1001-4551.2021.05.006

    CHEN S, WANG C W, ZHANG Z Y, et al. Improved fuzzy PID method and its application in electro-hydraulic servo control[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(5): 559-565 (in Chinese). doi: 10.3969/j.issn.1001-4551.2021.05.006
    [12] 赵天宇, 苏庆宇. 基于变论域模糊控制的无刷直流电机转速问题[J]. 电机与控制应用, 2017, 44(11): 6-11. doi: 10.3969/j.issn.1673-6540.2017.11.002

    ZHAO T Y, SU Q Y. Brushless DC motor speed questions based on variable universe fuzzy control[J]. Electric Machines & Control Application, 2017, 44(11): 6-11 (in Chinese). doi: 10.3969/j.issn.1673-6540.2017.11.002
    [13] KARAHAN O. Design of optimal fractional order fuzzy PID controller based on cuckoo search algorithm for core power control in molten salt reactors[J]. Progress in Nuclear Energy, 2021, 139: 103868. doi: 10.1016/j.pnucene.2021.103868
    [14] MITRA P, DEY C, MUDI R K. Fuzzy rule-based set point weighting for fuzzy PID controller[J]. SN Applied Sciences, 2021, 3: 651.
    [15] RANJBAR E, MENHAJ M B, SURATGAR A A, et al. Design of a fuzzy PID controller for a MEMS tunable capacitor for noise reduction in a voltage reference source[J]. SN Applied Sciences, 2021, 3: 609.
    [16] YU L H, SONG S X. Design of flow cytometer liquid circuit control system based on incremental PID algorithm[J]. Journal of Physics:Conference Series, 2020, 1633(1): 012001. doi: 10.1088/1742-6596/1633/1/012001
    [17] KHADANGA R K, KUMAR A, PANDA S. Application of interval type-2 fuzzy PID controller for frequency regulation of AC islanded microgrid using modified equilibrium optimization algorithm[J]. Arabian Journal for Science and Engineering, 2021, 46(10): 1-17.
    [18] WANG B, GENG H P, LI H, et al. Particle swarm optimization-based fuzzy PID controller for stable control of active magnetic bearing system[J]. Journal of Physics:Conference Series, 2021, 1888(1): 012022. doi: 10.1088/1742-6596/1888/1/012022
    [19] KUMAR KHADANGA R, KUMAR A, PANDA S. Frequency control in hybrid distributed power systems via type-2 fuzzy PID controller[J]. IET Renewable Power Generation, 2021, 15(8): 1706-1723. doi: 10.1049/rpg2.12140
    [20] JIN X, CHEN K K, ZHAO Y, et al. Simulation of hydraulic transplanting robot control system based on fuzzy PID controller[J]. Measurement, 2020, 164: 108023. doi: 10.1016/j.measurement.2020.108023
    [21] SHI J Z, SONG Y. Mathematical Analysis of a simplified general type-2 fuzzy PID controller[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7994-8036. doi: 10.3934/mbe.2020406
    [22] WANG R X, AN A M, WEN Y A, et al. Study on the influence of parallel fuzzy PID control on the regulating system of a bulb tubular turbine generator unit[J]. Journal of Electrical Engineering & Technology, 2021, 16(3): 1403-1414.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  3
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 录用日期:  2022-08-15
  • 网络出版日期:  2022-09-30
  • 整期出版日期:  2024-04-29

目录

    /

    返回文章
    返回
    常见问答