留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于马蹄涡前缘吸气控制的压气机叶栅流动机理

唐耀璇 刘艳明 安宇飞 孙运政

唐耀璇,刘艳明,安宇飞,等. 基于马蹄涡前缘吸气控制的压气机叶栅流动机理[J]. 北京航空航天大学学报,2024,50(4):1282-1291 doi: 10.13700/j.bh.1001-5965.2022.0461
引用本文: 唐耀璇,刘艳明,安宇飞,等. 基于马蹄涡前缘吸气控制的压气机叶栅流动机理[J]. 北京航空航天大学学报,2024,50(4):1282-1291 doi: 10.13700/j.bh.1001-5965.2022.0461
TANG Y X,LIU Y M,AN Y F,et al. Flow mechanism of horseshoe vortex suction control for compressor cascade[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1282-1291 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0461
Citation: TANG Y X,LIU Y M,AN Y F,et al. Flow mechanism of horseshoe vortex suction control for compressor cascade[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1282-1291 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0461

基于马蹄涡前缘吸气控制的压气机叶栅流动机理

doi: 10.13700/j.bh.1001-5965.2022.0461
详细信息
    通讯作者:

    E-mail:liuym@bit.edu.cn

  • 中图分类号: V231.3;TB553

Flow mechanism of horseshoe vortex suction control for compressor cascade

More Information
  • 摘要:

    为探究从源头抑制角区分离的流动控制方法,采用数值模拟方法,以NACA65叶栅为研究对象,利用叶栅前缘端壁吸气技术控制马蹄涡,结合拓扑分析对叶栅通道内的三维流动结构进行精确重构,以研究前缘端壁吸气控制马蹄涡进而改善叶栅通道流场结构的机理。结果表明:叶栅前缘端壁吸气技术可以有效推迟马蹄涡形成并削弱其强度,同时在吸气狭缝末端形成一对反旋流向涡对,在向下游发展过程中与通道涡相互作用;前缘端壁吸气通过控制马蹄涡,降低端壁边界层厚度,叶栅前缘通道涡发展受限,由回流组成的叶表分离被抑制;前缘及压力面侧吸气(EPS)直接作用于马蹄涡压力面分支,通道涡强度进一步被削弱,角区分离模式由闭式分离转为不完全闭式分离。最后,对比最优吸气系数下不同方案出口总压损失,发现当吸气量为进口质量流量的0.2%时,EPS方案出口截面总压损失降低5.8%;并且通过调整吸气系数,可以获得较好的变工况控制性能。

     

  • 图 1  前缘端壁吸气方案

    Figure 1.  Cases of endwall suction at leading edge

    图 2  原型叶栅计算网格

    Figure 2.  Computational grid for prototype blade

    图 3  叶栅进口附面层特性

    Figure 3.  Boundary layer characteristic at blade cascade inlet surface

    图 4  叶高处叶表静压系数分布(x/H=4%)[12]

    Figure 4.  Streamwise distributions of static pressure coefficient on blade surface (x/H=4%)[12]

    图 5  叶栅出口节距平均能量损失系数分布(z/C=146%)

    Figure 5.  Spanwise distributions of pitch-averaged energy loss coefficient at outlet pitch of blade cascade (z/C=146%)

    图 6  各方案不同吸气系数下总压损失系数分布

    Figure 6.  Distribution of total pressure loss coefficients under different suction coefficient for each case

    图 7  叶栅前缘涡系结构(Ω=0.52)

    Figure 7.  Vortex system structure at leading edge of blade cascade(Ω=0.52)

    图 8  不同方案马蹄涡压力面分支涡系结构

    Figure 8.  Pressure side leg of horseshoe vortex system structure for different cases

    图 9  不同方案马蹄涡吸力面分支涡系结构

    Figure 9.  Suction side leg of horseshoe vortex system structure for different cases

    图 10  前缘吸气产生的流向涡结构

    Figure 10.  Streamwise vortices structure generated by leading edge suction

    图 11  吸气控制对分离区拓扑结构的影响

    Figure 11.  Influence of suction control on topology of separated surface flow pattern

    图 12  距离叶栅前缘10%弦长处边界层位移厚度及边界层动量厚度

    Figure 12.  Boundary layer displacement thickness and momentum thickness at 10% chord from leading edge of blade cascade

    图 13  EPS方案40%节距边界层厚度

    Figure 13.  Boundary layer thickness at 40% pitch on EPS

    图 14  吸气控制对气流偏转角的影响

    Figure 14.  Influence of suction control on flow deviation angle

    图 15  具有前缘及压力面侧吸气的叶栅通道涡系演化示意图

    Figure 15.  Schematic evolution of vortex flow pattern with suction at leading edge and pressure side

    图 16  节距平均总压损失系数分布

    Figure 16.  Spanwise distributions of pitch-averaged pressure loss coefficient

    图 17  不同冲角下总压损失系数分布

    Figure 17.  Distribution of total pressure loss coefficients under different incidence angle

    表  1  不同吸气方案总压损失系数

    Table  1.   Total pressure loss coefficient in different suction scenarios

    方案 $ \varpi /\% $ $ {C_{\text{s}}}/\% $
    Ori 5.49
    ES 5.70 0.0058
    EPS 5.17 0.2070
    ESS 5.75 0.0162
    下载: 导出CSV
  • [1] 吴艳辉, 王博, 付裕, 等. 轴流压气机角区分离的研究进展[J]. 航空学报, 2017, 38(9): 107-128.

    WU Y H, WANG B, FU Y, et al. Research progress of corner separation in axial-flow compressor[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 107-128(in Chinese).
    [2] BAKER C J. Vortex flow around the bases of obstacles[D]. Cambridge : University of Cambridge, 1979.
    [3] ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23(1): 601-639. doi: 10.1146/annurev.fl.23.010191.003125
    [4] WANG H, OLSON S J, GOLDSTEIN R J, et al. Flow visualization in a linear turbine cascade of high performance turbine blades[J]. Journal of Turbomachinery, 1997, 119(1): 1-8. doi: 10.1115/1.2841006
    [5] PHILIPS D B, CIMBALA J M, TREASTER A L. Suppression of the wing-body junction vortex by body surface suction[J]. Journal of Aircraft, 1992, 29(1): 118-122. doi: 10.2514/3.46134
    [6] BLOXHAM M J, BONS J P. Leading-edge endwall suction and midspan blowing to reduce turbomachinery losses[J]. Journal of Propulsion and Power, 2010, 26(6): 1268-1275. doi: 10.2514/1.46105
    [7] LIESNER K, MEYER R, LEMKE M, et al. On the efficiency of secondary flow suction in a compressor cascade[C]//Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. NewYork: ASME, 2010: 151-160.
    [8] GUO S, LU H, CHEN F, et al. Vortex control and aerodynamic performance improvement of a highly loaded compressor cascade via inlet boundary layer suction[J]. Experiments in Fluids, 2013, 54(7): 1570. doi: 10.1007/s00348-013-1570-y
    [9] CHEN P, QIAO W, LIESNER K, et al. Effect of segment endwall boundary layer suction on compressor 3D corner separation[C]//Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. NewYork: ASME, 2015.
    [10] ZHANG H, CHEN S. A comparative experimental analysis of two unsteady flow control methods in a highly loaded compressor cascade[J]. Experiments in Fluids, 2020, 61(6): 132. doi: 10.1007/s00348-020-02976-w
    [11] LIANG T, LIU B, SPENCE S. Effect of boundary layer suction on the corner separation in a highly loaded axial compressor cascade[J]. Journal of Turbomachinery, 2021, 143(6): 61002. doi: 10.1115/1.4050148
    [12] 赵桂杰. 弯掠扩压叶栅内附面层与二次流控制的研究[D]. 哈尔滨: 哈尔滨工业大学, 2005.

    ZHAO G J. Study on boundary layer and secondary flow control in bowed-swept diffuser cascade[D]. Harbin: Harbin Institute of Technology, 2005(in Chinese).
    [13] TOBAK M, PEAKE D J. Topology of three-dimensional separated flows[J]. Annual Review of Fluid Mechanics, 1982, 14(1): 61-85. doi: 10.1146/annurev.fl.14.010182.000425
    [14] 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413-431.

    LIU C Q, Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica, 2020, 38(3): 413-431(in Chinese).
    [15] HAO X, LE C, BAO L, et al. Numerical Investigations on Oscillating aspiration control in high-load compressor cascades[J]. Journal of Propulsion and Power, 2019, 35(4): 850-862. doi: 10.2514/1.B37200
    [16] DALLMANN U. Three-dimensional vortex structures and vorticity topology[J]. Fluid Dynamics Research, 1988, 3(1-4): 183-189. doi: 10.1016/0169-5983(88)90063-9
    [17] 张华良. 采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    ZHANG H L. Investigation on application of dihedral/swept blade and boundary layer suction to control vortex configuration in compressor cascades[D]. Harbin: Harbin Institute of Technology, 2007(in Chinese).
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  104
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 录用日期:  2022-07-17
  • 网络出版日期:  2022-08-03
  • 整期出版日期:  2024-04-29

目录

    /

    返回文章
    返回
    常见问答