留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行器旋转翼折展过程动稳定性研究进展

甘文彪 左振杰 向锦武 赵忠良 蔡军 马上

甘文彪,左振杰,向锦武,等. 飞行器旋转翼折展过程动稳定性研究进展[J]. 北京航空航天大学学报,2024,50(4):1053-1064 doi: 10.13700/j.bh.1001-5965.2022.0469
引用本文: 甘文彪,左振杰,向锦武,等. 飞行器旋转翼折展过程动稳定性研究进展[J]. 北京航空航天大学学报,2024,50(4):1053-1064 doi: 10.13700/j.bh.1001-5965.2022.0469
GAN W B,ZUO Z J,XIANG J W,et al. Research progress on dynamic stability of rotating variant wing opening and closing process for aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1053-1064 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0469
Citation: GAN W B,ZUO Z J,XIANG J W,et al. Research progress on dynamic stability of rotating variant wing opening and closing process for aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1053-1064 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0469

飞行器旋转翼折展过程动稳定性研究进展

doi: 10.13700/j.bh.1001-5965.2022.0469
基金项目: 国家自然科学基金(U2141249,11902018,U2141252);航空科学基金(2019ZA051001)
详细信息
    通讯作者:

    E-mail:ganhope@buaa.edu.cn

  • 中图分类号: V211;V212

Research progress on dynamic stability of rotating variant wing opening and closing process for aircraft

Funds: National Natural Science Foundation of China (U2141249,11902018,U2141252);Aeronautical Science Foundation of China (2019ZA051001)
More Information
  • 摘要:

    旋转翼是一种可绕固定轴旋转变体的机翼,广泛应用于新型无人机、巡飞弹、航空炸弹等飞行器,其折展过程中的动稳定特性是决定旋转翼飞行器设计成败的关键基础问题。基于此,梳理了近年来飞行器旋转翼折展过程动稳定机理的研究进展。介绍了旋转翼发展历程及其面临的折展动稳定关键问题;从非定常气动数值模拟、非定常动态特性数值模拟、CFD/RBD一体化耦合数值模拟3个层次阐述了折展过程动稳定数值模拟进展;介绍了旋转翼折展扰动下的非线性动力学建模及动稳定性分析的现状;分析了旋转翼折展动稳定性机理的风洞试验验证情况;总结了旋转翼折展过程动稳定研究面临的科学问题,并提出了可行的研究方向。

     

  • 图 1  AD-1飞机及其旋转翼折展示意图

    Figure 1.  Schematic diagram of folding and spreading of its rotating variant wing the AD-1aircraft as well as the rotating variant wing

    图 2  典型旋转翼飞行器示意图

    Figure 2.  Schematic diagram of typical rotary wing aircraft

    图 3  气动/运动耦合并行计算流程[24]

    Figure 3.  Flow chart of aerodynamic/motion coupling parallel computing[24]

    图 4  基于网格重叠的计算网格和流场示意图

    Figure 4.  Schematic diagram of calculation grid and flow field diagram based on grid overlap

    图 5  基于深度学习的流动特征与扰动参数建模过程

    Figure 5.  Flow characteristics and disturbance parameter modeling process based on deep learning

    图 6  基于极限学习机的随机型气动建模过程

    Figure 6.  Process of stochastic aerodynamic modeling based on limit learning machine

    图 7  动态试验风洞和结果[77]

    Figure 7.  Dynamic test wind tunnel and results[77]

  • [1] JONES R T. Reduction of wave drag by antisymmetric arrangement of wings and bodies[J]. AIAA Journal, 1972, 10(2): 171-176. doi: 10.2514/3.6555
    [2] 郝南松, 刘昀, 王进, 等. 斜置平板的低速风洞实验研究[J]. 空气动力学学报, 2013, 31(3): 344-349.

    HAO N S, LIU Y, WANG J, et al. Wind tunnel investigation of a low speed oblique plate[J]. Acta Aerodynamica Sinica, 2013, 31(3): 344-349(in Chinese).
    [3] 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5): 829-857. doi: 10.7638/kqdlxxb-2020.0072

    YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5): 829-857(in Chinese). doi: 10.7638/kqdlxxb-2020.0072
    [4] GAN W B, ZHANG X C, MA T L, et al. Robust design and analysis of a conformal expansion nozzle with inverse-design idea[J]. Chinese Journal of Aeronautics, 2018, 31(1): 79-88. doi: 10.1016/j.cja.2017.11.009
    [5] 严恒元. 飞行器气动特性分析与工程计算[M]. 西安: 西北工业大学出版社, 1990: 92-113.

    YAN H Y. Aerodynamic characteristics analysis and engineering calculation of aircraft[M]. Xi’an: Northwestern Polytechnical University Press, 1990: 92-113(in Chinese).
    [6] 刘溢浪, 张伟伟, 田八林, 等. 一种超音速高超音速动导数的高效计算方法[J]. 西北工业大学学报, 2013, 31(5): 824-828. doi: 10.3969/j.issn.1000-2758.2013.05.027

    LIU Y L, ZHANG W W, TIAN B L, et al. Effectively calculating supersonic and hypersonic dynamic derivatives[J]. Journal of Northwestern Polytechnical University, 2013, 31(5): 824-828(in Chinese). doi: 10.3969/j.issn.1000-2758.2013.05.027
    [7] STALNAKER J. Rapid computation of dynamic stability derivatives[C]//Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004: 210.
    [8] MOORE F G, MOORE L Y. 2009 version of the aeroprediction code: AP09[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 677-690. doi: 10.2514/1.35703
    [9] 刘绪, 刘伟, 柴振霞, 等. 飞行器动态稳定性参数计算方法研究进展[J]. 航空学报, 2016, 37(8): 2348-2369. doi: 10.7527/S1000-6893.2016.0098

    LIU X, LIU W, CHAI Z X, et al. Research progress of numerical method of dynamic stability derivatives of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2348-2369(in Chinese). doi: 10.7527/S1000-6893.2016.0098
    [10] 任玉新, 刘秋生, 沈孟育. 飞行器动态稳定性参数的数值计算方法[J]. 空气动力学学报, 1996, 14(2): 117-126.

    REN Y X, LIU Q S, SHEN M Y. Numerical calculation method of dynamic stability parameters of aircraft[J]. Acta Aerodynamica Sinica, 1996, 14(2): 117-126(in Chinese).
    [11] 刘伟. 细长机翼摇滚机理的非线性动力学分析及数值模拟方法研究[D]. 长沙: 国防科学技术大学, 2004: 114-122.

    LIU W. Nonlinear dynamics analysis for mechanism of slender wing rock and study of numerical simulation method[D]. Changsha: National University of Defense Technology, 2004: 114-122(in Chinese).
    [12] 袁先旭, 张涵信, 谢昱飞. 基于CFD方法的俯仰静、动导数数值计算[J]. 空气动力学学报, 2005, 23(4): 458-463. doi: 10.3969/j.issn.0258-1825.2005.04.012

    YUAN X X, ZHANG H X, XIE Y F. The pitching static/dynamic derivatives computation based on CFD methods[J]. Acta Aerodynamica Sinica, 2005, 23(4): 458-463(in Chinese). doi: 10.3969/j.issn.0258-1825.2005.04.012
    [13] 孙涛, 高正红, 黄江涛. 基于CFD的动导数计算与减缩频率影响分析[J]. 飞行力学, 2011, 29(4): 15-18.

    SUN T, GAO Z H, HUANG J T. Identify of aircraft dynamic derivatives based on CFD technology and analysis of reduce frequency[J]. Flight Dynamics, 2011, 29(4): 15-18(in Chinese).
    [14] MCGOWAN G Z, KURZEN M J, NANCE R P, et al. High fidelity approaches for pitch damping prediction at high angles of attack[J]. Journal of Spacecraft and Rockets, 2014, 51(5): 1474-1484. doi: 10.2514/1.A32625
    [15] 范晶晶, 阎超, 李跃军. 飞行器大迎角下俯仰静、动导数的数值计算[J]. 航空学报, 2009, 30(10): 1846-1850. doi: 10.3321/j.issn:1000-6893.2009.10.009

    FAN J J, YAN C, LI Y J. Computation of vehicle pitching static and dynamic derivatives at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1846-1850(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.10.009
    [16] 郭东, 徐敏, 陈士橹. 基于网格速度法的非定常流场模拟和动导数计算[J]. 西北工业大学学报, 2012, 30(5): 784-788. doi: 10.3969/j.issn.1000-2758.2012.05.028

    GUO D, XU M, CHEN S L. An effective computation method based on field velocity approach for unsteady flow simulation and obtaining dynamic derivatives[J]. Journal of Northwestern Polytechnical University, 2012, 30(5): 784-788(in Chinese). doi: 10.3969/j.issn.1000-2758.2012.05.028
    [17] MURMAN S. A reduced-frequency approach for calculating dynamic derivatives[C]//Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: 840.
    [18] 赵瑞. 飞行器动态气动特性与仿真技术[M]. 北京: 北京理工大学出版社, 2019.

    ZHAO R. Dynamic aerodynamic characteristics and numerical simulation method of flight vehicles[M]. Beijing: Beijing Insititute of Technology Press, 2019(in Chinese).
    [19] ZHANG H X, ZHANG Z, YUAN X X, et al. Physical analysis and numerical simulation for the dynamic behaviour of vehicles in pitching oscillations or rocking motions[J]. Science in China Series E:Technological Sciences, 2007, 50(4): 385-401. doi: 10.1007/s11431-007-0047-8
    [20] 李锋, 杨云军, 崔尔杰, 等. 飞行器自激振荡的流动物理与动力学机制[J]. 空气动力学学报, 2009, 27(1): 106-113. doi: 10.3969/j.issn.0258-1825.2009.z1.019

    LI F, YANG Y J, CUI E J, et al. Flow physics and dynamics mechanism of self-oscillation of an flight vehicle[J]. Acta Aerodynamica Sinica, 2009, 27(1): 106-113(in Chinese). doi: 10.3969/j.issn.0258-1825.2009.z1.019
    [21] 李跃军, 闫超. 非定常流动计算的混合时间推进方法研究[J]. 空气动力学学报, 2007, 25(4): 483-487. doi: 10.3969/j.issn.0258-1825.2007.04.013

    LI Y J, YAN C. A hybrid time stepping scheme for calculating unsteady flows[J]. Acta Aerodynamica Sinica, 2007, 25(4): 483-487(in Chinese). doi: 10.3969/j.issn.0258-1825.2007.04.013
    [22] 赵海洋. 返回舱动态稳定性物理机理分析及被动/主动控制方法研究[D]. 长沙: 国防科学技术大学, 2007: 63-72.

    ZHAO H Y. Study on the mechanism and passive/active control methods of the dynamic stability of the reentry capsules[D]. Changsha: National University of Defense Technology, 2007: 63-72(in Chinese).
    [23] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙: 国防科学技术大学, 2012: 42-46.

    YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D]. Changsha: National University of Defense Technology, 2012: 42-46(in Chinese).
    [24] 王晓冰. 高机动飞行器气动/运动耦合特性数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015: 24-29.

    WANG X B. Numerical investigation of aerodynamics and flight dynamics coupling for flight vehicle with high maneuverability[D]. Mianyang: China Aerodynamics Research and Development Center, 2015: 24-29(in Chinese).
    [25] 马戎. 基于动态混合网格的气动/运动耦合一体化计算方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015: 59-62.

    MA R. Numerical methods for aerodynamic/kinematic coupling problems based on dynamic hybrid grids[D]. Mianyang: China Aerodynamics Research and Development Center, 2015: 59-62(in Chinese) .
    [26] 米百刚. 基于CFD的动导数计算及非线性气动力建模技术[D]. 西安: 西北工业大学, 2018: 7-10.

    MI B G. Calculating dynamic derivative and modeling nonlinear unsteady aerodynamics based on CFD[D]. Xi’an: Northwestern Polytechnical University, 2018: 7-10(in Chinese).
    [27] TOBAK M. On the use of the indicial function concept in the analysis of unsteady motion of wings and wing-tail combinations: NACAR-1188[R]. Washington, D. C. : NACAR, 1954.
    [28] MURPHY P, KLEIN V, FRINK N. Unsteady aerodynamic modeling in roll for the NASA generic transport model[C]//Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2012: 4652.
    [29] GOMAN M G, KHRABROV A N, USOLTSEY S P. Unsteady aerodynamic model for large amplitude maneuvers and its parameter identification[C]//Proceedings of the 11th IFAC Symposium on System Identification. Kitakyushu: IFAC, 1997: 399-404.
    [30] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8): 2331-2347. doi: 10.7527/S1000-6893.2016.0072

    WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2331-2347(in Chinese). doi: 10.7527/S1000-6893.2016.0072
    [31] BERAN P S, LUCIA D J, PETTIT C L. Reduced-order modelling of limit-cycle oscillation for aeroelastic systems[J]. Journal of Fluids and Structures, 2004, 19(5): 575-590. doi: 10.1016/j.jfluidstructs.2004.04.002
    [32] DOWELL E H, THOMAS J P, HALL K C. Transonic limit cycle oscillation analysis using reduced order aerodynamic models[J]. Journal of Fluids and Structures, 2004, 19(1): 17-27. doi: 10.1016/j.jfluidstructs.2003.07.018
    [33] ZHOU Q, CHEN G, DA RONCH A, et al. Reduced order unsteady aerodynamic model of a rigid aerofoil in gust encounters[J]. Aerospace Science and Technology, 2017, 63: 203-213. doi: 10.1016/j.ast.2016.12.029
    [34] LIU L, DOWELL E H, THOMAS J P. A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces[J]. Journal of Fluids and Structures, 2007, 23(3): 351-363. doi: 10.1016/j.jfluidstructs.2006.09.005
    [35] THOMAS J P, DOWELL E H, HALL K C. Modeling viscous transonic limit cycle oscillation behavior using a harmonic balance approach[J]. Journal of Aircraft, 2004, 41(6): 1266-1274. doi: 10.2514/1.9839
    [36] EKICI K, KIELB R E, HALL K C. The effect of aerodynamic asymmetries on turbomachinery flutter[J]. Journal of Fluids and Structures, 2013, 36: 1-17. doi: 10.1016/j.jfluidstructs.2012.08.009
    [37] SILVA W. Identification of nonlinear aeroelastic systems based on the Volterra theory: Progress and opportunities[J]. Nonlinear Dynamics, 2005, 39(1): 25-62.
    [38] BALAJEWICZ M, NITZSCHE F, FESZTY D. Application of multi-input Volterra theory to nonlinear multi-degree-of-freedom aerodynamic systems[J]. AIAA Journal, 2010, 48(1): 56-62. doi: 10.2514/1.38964
    [39] SILVA W. Recent enhancements to the development of CFD-based aeroelastic reduced-order models[C]//Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
    [40] SILVA W A, BARTELS R E. Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code[J]. Journal of Fluids and Structures, 2004, 19(6): 729-745. doi: 10.1016/j.jfluidstructs.2004.03.004
    [41] COWAN T J, ARENA A S JR, GUPTA K K. Accelerating computational fluid dynamics based aeroelastic predictions using system identification[J]. Journal of Aircraft, 2001, 38(1): 81-87. doi: 10.2514/2.2737
    [42] ZHANG W W, WANG B B, YE Z Y, et al. Efficient method for limit cycle flutter analysis by nonlinear aerodynamic reduced-order models[J]. AIAA Journal, 2012, 50(5): 1019-1028. doi: 10.2514/1.J050581
    [43] MARQUES F D, ANDERSON J. Identification and prediction of unsteady transonic aerodynamic loads by multi-layer functionals[J]. Journal of Fluids and Structures, 2001, 15(1): 83-106. doi: 10.1006/jfls.2000.0321
    [44] HUANG G B, SARATCHANDRAN P, SUNDARARAJAN N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation[J]. IEEE Transactions on Neural Networks, 2005, 16(1): 57-67. doi: 10.1109/TNN.2004.836241
    [45] MACKMAN T J, ALLEN C B, GHOREYSHI M, et al. Comparison of adaptive sampling methods for generation of surrogate aerodynamic models[J]. AIAA Journal, 2013, 51(4): 797-808. doi: 10.2514/1.J051607
    [46] LIU H J, HU H Y, ZHAO Y H, et al. Efficient reduced-order modeling of unsteady aerodynamics robust to flight parameter variations[J]. Journal of Fluids and Structures, 2014, 49: 728-741. doi: 10.1016/j.jfluidstructs.2014.06.015
    [47] LI W C, JIN D P, ZHAO Y H. Efficient nonlinear reduced-order modeling for synthetic-jet-based control at high angle of attack[J]. Aerospace Science and Technology, 2017, 62: 98-107. doi: 10.1016/j.ast.2016.11.029
    [48] CHEN G, SUN J, MAO W T, et al. Limit cycle oscillation control for transonic aeroelastic systems based on support vector machine reduced order model[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2013, 56(1): 8-14. doi: 10.2322/tjsass.56.8
    [49] GU J, ZOU Q Y, DENG C H, et al. A novel robust online extreme learning machine for the non-gaussian noise[J]. Chinese Journal of Electronics, 2023, 32(1): 130-139. doi: 10.23919/cje.2021.00.122
    [50] 姜泽翔, 杨立本, 王栋, 等. 倾转双旋翼无人机风场扰动下的建模和控制器设计[J]. 飞行力学, 2021, 39(5): 38-43.

    JIANG Z X, YANG L B, WANG D, et al. Modeling and controller design of tilting twin-rotor UAV under wind field disturbance[J]. Flight Dynamics, 2021, 39(5): 38-43(in Chinese).
    [51] 高振兴, 顾宏斌. 复杂大气扰动下大型飞机飞行动力学建模研究[J]. 系统仿真学报, 2009, 21(17): 5556-5561.

    GAO Z X, GU H B. Research on modeling of flight dynamics for large aircraft in complex atmospheric disturbance[J]. Journal of System Simulation, 2009, 21(17): 5556-5561(in Chinese).
    [52] 陆昌根, 赵玲慧, 沈露予. 局部扰动对平板边界层流动稳定性影响的研究[J]. 空气动力学学报, 2012, 30(1): 63-67. doi: 10.3969/j.issn.0258-1825.2012.01.011

    LU C G, ZHAO L H, SHEN L Y. Numerical study on the effect of local disturbance on hydrodynamic stability of plate boundary layer[J]. Acta Aerodynamica Sinica, 2012, 30(1): 63-67(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.01.011
    [53] 何磊, 张显才, 钱炜祺, 等. 基于长短时记忆神经网络的非定常气动力建模方法[J]. 飞行力学, 2021, 39(5): 8-12.

    HE L, ZHANG X C, QIAN W Q, et al. Unsteady aerodynamics modeling method based on long short-term memory neural network[J]. Flight Dynamics, 2021, 39(5): 8-12(in Chinese).
    [54] 武频, 孙俊五, 封卫兵. 基于自编码器和LSTM的模型降阶方法[J]. 空气动力学学报, 2021, 39(1): 73-81.

    WU P, SUN J W, FENG W B. Reduced order model based on autoencoder and long short-term memory network[J]. Acta Aerodynamica Sinica, 2021, 39(1): 73-81(in Chinese).
    [55] 吕永玺. 先进战斗机大迎角建模和控制关键技术研究[D]. 西安: 西北工业大学, 2018.

    LYU Y X. Research on the key technologies of modeling and control of the advanced fighter at high angle of attack[D]. Xi’an: Northwestern Polytechnical University, 2018(in Chinese).
    [56] 乐挺, 王立新, 艾俊强. 变体飞机设计的主要关键技术[J]. 飞行力学, 2009, 27(5): 6-10.

    YUE T, WANG L X, AI J Q. Key technologies in morphing aircraft design[J]. Flight Dynamics, 2009, 27(5): 6-10(in Chinese).
    [57] YUE T, WANG L X, AI J Q. Longitudinal linear parameter varying modeling and simulation of morphing aircraft[J]. Journal of Aircraft, 2013, 50(6): 1673-1681. doi: 10.2514/1.C031316
    [58] YUE T, WANG L X, AI J Q. Gain self-scheduled H control for morphing aircraft in the wing transition process based on an LPV model[J]. Chinese Journal of Aeronautics, 2013, 26(4): 909-917. doi: 10.1016/j.cja.2013.06.004
    [59] 乐挺, 王立新, 艾俊强. Z型翼变体飞机的纵向多体动力学特性[J]. 航空学报, 2010, 31(4): 679-686.

    YUE T, WANG L X, AI J Q. Longitudinal multi-body dynamic characteristics of Z-wing morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 679-686(in Chinese).
    [60] HENRY J, PINES D. A mathematical model for roll dynamics by use of a morphing-span wing[C]//Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
    [61] 殷明, 陆宇平, 何真. 变体飞行器LPV建模与鲁棒增益调度控制[J]. 南京航空航天大学学报, 2013, 45(2): 202-208. doi: 10.3969/j.issn.1005-2615.2013.02.008

    YIN M, LU Y P, HE Z. LPV modeling and robust gain scheduling control of morphing aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(2): 202-208(in Chinese). doi: 10.3969/j.issn.1005-2615.2013.02.008
    [62] HENRY J J. Roll control for UAVs by use of a variable-span morphing wing[D]. Annapolis: University of Maryland, 2005: 54-63.
    [63] 金鼎, 张炜, 艾俊强. 折叠机翼变体飞机纵向操纵性与稳定性研究[J]. 飞行力学, 2011, 29(1): 5-8.

    JIN D, ZHANG W, AI J Q. Study on longitudinal maneuverability and stability of folding wing morphing aircraft[J]. Flight Dynamics, 2011, 29(1): 5-8(in Chinese).
    [64] BEAVERSTOCK C S, FINCHAM J, FRISWELL M I, et al. Effect of symmetric & asymmetric span morphing on flight dynamics[C]//Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2014.
    [65] SEIGLEI T M. Dynamics and control of morphing aircraft[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2005: 73-105.
    [66] SEIGLER T M, NEAL D A. Analysis of transition stability for morphing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6): 1947-1954. doi: 10.2514/1.44108
    [67] SHI R Q, WAN W Y. Analysis of flight dynamics for large-scale morphing aircraft[J]. Aircraft Engineering and Aerospace Technology, 2015, 87(1): 38-44. doi: 10.1108/AEAT-01-2013-0004
    [68] 张杰, 吴森堂. 一种变体飞行器的动力学建模与动态特性分析[J]. 北京航空航天大学学报, 2015, 41(1): 58-64.

    ZHANG J, WU S T. Dynamic modeling for a morphing aircraft and dynamic characteristics analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 58-64(in Chinese).
    [69] 李文成. 变体飞行器动力学建模与稳定性分析及控制[D]. 南京: 南京航空航天大学, 2017.

    LI W C. Dynamic modeling, stability analysis and control of variant aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [70] 杨贯通, 唐胜景, 赵林东, 等. 变后掠变展长飞行器动力学建模与动态响应分析[J]. 兵工学报, 2014, 35(1): 102-107. doi: 10.3969/j.issn.1000-1093.2014.01.015

    YANG G T, TANG S J, ZHAO L D, et al. Dynamic modeling and response of a morphing UAV with variable sweep and variable span[J]. Acta Armamentarii, 2014, 35(1): 102-107(in Chinese). doi: 10.3969/j.issn.1000-1093.2014.01.015
    [71] 贺中, 吴军强, 蒋卫民, 等. 细长体大迎角非对称流动的高速PIV风洞试验研究[J]. 空气动力学学报, 2014, 32(3): 295-299.

    HE Z, WU J Q, JIANG W M, et al. Study on asymmetric flow over slender body at high angles of attack via particle image velocimetry test in high speed wind tunnel[J]. Acta Aerodynamica Sinica, 2014, 32(3): 295-299(in Chinese).
    [72] ARAUJO-ESTRADA S A, LOWENBERG M H, NEILD S, et al. Evaluation of aircraft model upset behaviour using wind tunnel manoeuvre rig[C]//Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2015.
    [73] 史志伟, 耿玺, 程克明, 等. 一种适用于复杂风洞动态试验的新型机构[C]//中国力学大会-2015, 北京: 中国力学学会, 2015: 244.

    SHI Z W, GENG X, CHENG K M, et al. A new mechanism for dynamic test in complex wind tunnel[C]//Proceedings of the Chinese Congress of Theoretical and Applied Mechanics 2015. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2015: 244(in Chinese).
    [74] 邓学蓥, 石伟, 王延奎, 等. 两类非对称涡流动所诱导的摇滚运动[J]. 气体物理, 2016, 1(1): 13-24.

    DENG X Y, SHI W, WANG Y K, et al. Wing rock motions induced by two kinds of asymmetric vortices flows[J]. Physics of Gases, 2016, 1(1): 13-24(in Chinese).
    [75] 赵忠良, 杨海泳, 马上, 等. 某典型飞行器模型俯仰/滚转两自由度耦合动态气动特性[J]. 航空学报, 2018, 39(12): 107-116.

    ZHAO Z L, YANG H Y, MA S, et al. Unsteady aerodynamic characteristics of two-degree-of-freedom pitch/roll coupled motion for a typical vehicle model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 107-116(in Chinese).
    [76] 陶洋, 赵忠良, 李浩, 等. 80°/65°双三角翼滚转稳定特性预测研究[J]. 实验流体力学, 2013, 27(6): 43-46. doi: 10.3969/j.issn.1672-9897.2013.06.008

    TAO Y, ZHAO Z L, LI H, et al. Study on prediction of rolling stability characteristics of 80/65 double delta wings[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6): 43-46(in Chinese). doi: 10.3969/j.issn.1672-9897.2013.06.008
    [77] 陶洋, 赵忠良, 王红彪, 等. 前体涡诱导机翼摇滚扰动控制高速风洞试验研究[J]. 实验流体力学, 2014, 28(1): 21-25. doi: 10.11729/syltlx20120203

    TAO Y, ZHAO Z L, WANG H B, et al. Flow control investigation on wing rock induced by forebody vortex at high speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1): 21-25(in Chinese). doi: 10.11729/syltlx20120203
  • 加载中
图(7)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  99
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-11
  • 录用日期:  2022-08-19
  • 网络出版日期:  2022-09-22
  • 整期出版日期:  2024-04-29

目录

    /

    返回文章
    返回
    常见问答