Model-free predictive current control for permanent magnet toroidal motor with extended state observer
-
摘要:
为改善无差拍预测电流控制(DPCC)对永磁超环面电机系统参数的依赖性,研究了引入扩张状态观测器(ESO)的永磁超环面电机无模型预测电流控制(MFPCC-ESO)策略。根据永磁超环面电机的复合转子结构,引入自转运动影响系数与磁势系数,在旋转坐标系下建立该电机的时变数学模型;利用永磁超环面电机系统的输入与输出,建立该电机具有时变比例因子的超局部模型,同时引入ESO对超局部模型的干扰部分进行实时估计,并利用朱利稳定判据证明了ESO的稳定性;结合延时补偿的DPCC预测得到参考电压矢量,从而实现永磁超环面电机的MFPCC-ESO策略。对参数匹配和失配下永磁超环面电机MFPCC-ESO策略与DPCC策略进行对比分析,仿真结果表明:MFPCC-ESO策略下的永磁超环面电机具有优越的动态和稳态性能及强鲁棒性,同时该控制策略还能有效降低永磁超环面电机的输出波动。
Abstract:The model-free predictive current control method for the toroidal motor with extended state observer (MFPCC-ESO) was investigated in order to reduce the dependence of deadbeat predictive current control (DPCC) on the parameters of a permanent magnet toroidal motor system. According to the composite rotor structure of a toroidal motor, the rotation motion influence coefficient and magnetomotive force coefficient were introduced. The rotating coordinate system was used to build the time-varying mathematical model of the toroidal motor. Then the ultra-local model with a time-varying scaling factor was established by using the input and output of the toroidal motor system. Meanwhile, ESO was introduced to estimate the interference part of the ultra-local model in real time, and the stability of ESO was proved by using the Jury criterion. Combining with the delay compensation DPCC, the reference voltage vector was obtained. The MFPCC-ESO for the toroidal motor was further realized. The MFPCC-ESO strategy and DPCC strategy were compared and analyzed for toroidal motor under parameter matching and mismatch. The simulation results show that the toroidal motor with the MFPCC-ESO strategy has superior dynamic performance, steady-state performance, and strong robustness. Meanwhile, the proposed control strategy can also reduce the output fluctuation of the toroidal motor effectively.
-
Key words:
- toroidal motor /
- ultra-local model /
- model-free /
- predictive current control /
- extended state observer
-
表 1 永磁超环面电机参数
Table 1. Permanent magnet toroidal motor parameters
参数 数值 R/Ω 3.8 np1 4 z3 28 z2 12 k1 0.3 k2 5 pn/kW 1.5 Udc/V 311 B/(N·m·s) 0.001 J(kg·m2) 0.0015 $L_{{\mathrm{s}}0}' $/H 0.0012 $L_{{\mathrm{s}}2}' $/H 0.0004 $L_{{\mathrm{s}}2}'' $/H 0.003 ψf/Wb 0.26 UN/V 250 fN/Hz 100 -
[1] MAO J K, LI H M, YANG L G, et al. Non-cascaded model-free predictive speed control of SMPMSM drive system[J]. IEEE Transactions on Energy Conversion, 2022, 37(1): 153-162. doi: 10.1109/TEC.2021.3090427 [2] 匡晓霖, 徐金全, 黄春蓉, 等. 六相永磁同步电机驱动控制方式[J]. 北京航空航天大学学报, 2019, 45(7): 1361-1369.KUANG X L, XU J Q, HUANG C R, et al. Drive-control modes of six-phase PMSM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1361-1369(in Chinese). [3] SUN C, SUN D, CHEN W H, et al. Improved model predictive control with new cost function for hybrid-inverter open-winding PMSM system based on energy storage model[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10705-10715. doi: 10.1109/TPEL.2021.3061497 [4] 苏光靖, 李红梅, 李争, 等. 永磁同步直线电机无模型电流控制[J]. 电工技术学报, 2021, 36(15): 3182-3190.SU G J, LI H M, LI Z, et al. Research on model-free current control of permanent magnet synchronous linear motor[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3182-3190(in Chinese). [5] ZHANG W J, XU Y L, ZHOU G X. Research on a novel transverse flux permanent magnet motor with hybrid stator core and disk-type rotor for industrial robot applications[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11223-11233. doi: 10.1109/TIE.2020.3038060 [6] ZHOU S L, LI G L, WANG Q J, et al. Geometrical equivalence principle based modeling and analysis for monolayer halbach array spherical motor with cubic permanent magnets[J]. IEEE Transactions on Energy Conversion, 2021, 36(4): 3241-3250. doi: 10.1109/TEC.2021.3070207 [7] 洪玫, 姚立纲. 基于齿面网格的超环面行星蜗杆传动系统实体建模[J]. 中国机械工程, 2014, 25(7): 867-872.HONG M, YAO L G. Entity modeling of toroidal drive based on tooth surface grid[J]. China Mechanical Engineering, 2014, 25(7): 867-872(in Chinese). [8] 郝秀红, 朱学军, 许立忠. 机电集成超环面传动系统参数振动研究[J]. 振动与冲击, 2013, 32(22): 113-118. doi: 10.3969/j.issn.1000-3835.2013.22.021HAO X H, ZHU X J, XU L Z. Parametric vibration of an electromechanical integrated toroidal drive[J]. Journal of Vibration and Shock, 2013, 32(22): 113-118(in Chinese). doi: 10.3969/j.issn.1000-3835.2013.22.021 [9] LIU X, LI D, ZUO L. Modeling and control for an integrated permanent magnet toroidal motor drive with nonlinear electromagnetic parameters[J]. Applied Mathematical Modelling, 2021, 89: 154-170. doi: 10.1016/j.apm.2020.07.036 [10] LIU X, WANG H D. Analytical calculation and analysis of air gap magnetic field for electromechanical integrated toroidal drive[J]. Advances in Mechanical Engineering, 2019, 11(12): 168781401989592. [11] 刘欣, 许立忠, 聂岭. 新型超环面混合励磁电机的结构及特性分析[J]. 中国电机工程学报, 2015, 35(20): 5335-5343.LIU X, XU L Z, NIE L. Structure and characteristic analysis of a novel toroidal motor with hybrid excitation[J]. Proceedings of the CSEE, 2015, 35(20): 5335-5343(in Chinese). [12] XU L Z, LI R, SONG W T. Permanent magnetic toroidal drive with half stator[J]. Advances in Mechanical Engineering, 2017, 9(1): 168781401668631. [13] 秦艳忠, 阎彦, 陈炜, 等. 永磁同步电机参数误差补偿-三矢量模型预测电流控制[J]. 电工技术学报, 2020, 35(2): 255-265.QIN Y Z, YAN Y, CHEN W, et al. Three-vector model predictive current control strategy for permanent magnet synchronous motor drives with parameter error compensation[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 255-265(in Chinese). [14] ZHANG Y C, JIANG H, YANG H T. Model predictive control of PMSM drives based on general discrete space vector modulation[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 1300-1307. doi: 10.1109/TEC.2020.3036082 [15] LIU X C, ZHOU L B, WANG J, et al. Robust predictive current control of permanent-magnet synchronous motors with newly designed cost function[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10778-10788. doi: 10.1109/TPEL.2020.2980930 [16] SUN X D, WU M K, LEI G, et al. An improved model predictive current control for PMSM drives based on current track circle[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 3782-3793. doi: 10.1109/TIE.2020.2984433 [17] 史涔溦, 解正宵, 陈卓易, 等. 永磁同步电机无参数超局部模型预测控制[J]. 电机与控制学报, 2021, 25(8): 1-8.SHI C W, XIE Z X, CHEN Z Y, et al. Model-free predictive control based on ultra-local model for permanent magnet synchronous machines[J]. Electric Machines and Control, 2021, 25(8): 1-8(in Chinese). [18] NIU S X, LUO Y X, FU W N, et al. Robust model predictive control for a three-phase PMSM motor with improved control precision[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 838-849. doi: 10.1109/TIE.2020.3013753 [19] ZHOU Y N, LI H M, LIU R D, et al. Continuous voltage vector model-free predictive current control of surface mounted permanent magnet synchronous motor[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 899-908. doi: 10.1109/TEC.2018.2867218 [20] MA C W, LI H Y, YAO X L, et al. An improved model-free predictive current control with advanced current gradient updating mechanism[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 11968-11979. doi: 10.1109/TIE.2020.3044809 [21] YU F, ZHOU C H, LIU X, et al. Model-free predictive current control for three-level inverter-fed IPMSM with an improved current difference updating technique[J]. IEEE Transactions on Energy Conversion, 2021, 36(4): 3334-3343. doi: 10.1109/TEC.2021.3069274 [22] 赵凯辉, 周瑞睿, 冷傲杰, 等. 一种永磁同步电机的有限集无模型容错预测控制算法[J]. 电工技术学报, 2021, 36(1): 27-38.ZHAO K H, ZHOU R R, LENG A J, et al. Finite control set model-free fault-tolerant predictive control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 27-38(in Chinese). -