留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引入ESO的永磁超环面电机无模型预测电流控制

刘欣 王正阳 王晓远

刘欣,王正阳,王晓远. 引入ESO的永磁超环面电机无模型预测电流控制[J]. 北京航空航天大学学报,2024,50(4):1085-1096 doi: 10.13700/j.bh.1001-5965.2022.0495
引用本文: 刘欣,王正阳,王晓远. 引入ESO的永磁超环面电机无模型预测电流控制[J]. 北京航空航天大学学报,2024,50(4):1085-1096 doi: 10.13700/j.bh.1001-5965.2022.0495
LIU X,WANG Z Y,WANG X Y. Model-free predictive current control for permanent magnet toroidal motor with extended state observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1085-1096 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0495
Citation: LIU X,WANG Z Y,WANG X Y. Model-free predictive current control for permanent magnet toroidal motor with extended state observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1085-1096 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0495

引入ESO的永磁超环面电机无模型预测电流控制

doi: 10.13700/j.bh.1001-5965.2022.0495
基金项目: 国家自然科学基金(51875408);天津市研究生科研创新项目(2021YJSB229)
详细信息
    通讯作者:

    E-mail:liuxin@tiangong.edu.cn

  • 中图分类号: TM351

Model-free predictive current control for permanent magnet toroidal motor with extended state observer

Funds: National Natural Science Foundation of China (51875408); Tianjin Research Innovation Project for Postgraduate Students (2021YJSB229)
More Information
  • 摘要:

    为改善无差拍预测电流控制(DPCC)对永磁超环面电机系统参数的依赖性,研究了引入扩张状态观测器(ESO)的永磁超环面电机无模型预测电流控制(MFPCC-ESO)策略。根据永磁超环面电机的复合转子结构,引入自转运动影响系数与磁势系数,在旋转坐标系下建立该电机的时变数学模型;利用永磁超环面电机系统的输入与输出,建立该电机具有时变比例因子的超局部模型,同时引入ESO对超局部模型的干扰部分进行实时估计,并利用朱利稳定判据证明了ESO的稳定性;结合延时补偿的DPCC预测得到参考电压矢量,从而实现永磁超环面电机的MFPCC-ESO策略。对参数匹配和失配下永磁超环面电机MFPCC-ESO策略与DPCC策略进行对比分析,仿真结果表明:MFPCC-ESO策略下的永磁超环面电机具有优越的动态和稳态性能及强鲁棒性,同时该控制策略还能有效降低永磁超环面电机的输出波动。

     

  • 图 1  永磁超环面电机的结构简图

    Figure 1.  Structural diagram of permanent magnet toroidal motor

    图 2  行星轮磁齿的运动轨迹

    Figure 2.  Motion track of magnetic teeth on planet

    图 3  等效电流示意图

    Figure 3.  Schematic diagram of equivalent current

    图 4  永磁超环面电机MFPCC-ESO系统结构框图

    Figure 4.  Block diagram of MFPCC-ESO system for permanent magnet toroidal motor

    图 5  三相蜗杆内定子电流波形与频谱

    Figure 5.  Three-phase worm inner stator current waveforms and harmonic spectra

    图 6  稳态条件下的输出波形

    Figure 6.  Output waveforms at steady-state conditions

    图 7  转速阶跃响应

    Figure 7.  Speed step responses

    图 8  负载阶跃响应

    Figure 8.  Load step responses

    图 9  ESO的估计结果

    Figure 9.  Estimation results of ESO

    图 10  电感失配前后的稳态波形($ {L_{{{d}}({\theta _1})}} \to 1.5{L_{{{d}}({\theta _1})}} $)

    Figure 10.  Steady state waveforms before and after inductance mismatch ($ {L_{{{d}}({\theta _1})}} \to 1.5{L_{{{d}}({\theta _1})}} $)

    图 11  电感失配前后的稳态波形($ {L_{{{d}}({\theta _1})}} \to 0.5{L_{{{d}}({\theta _1})}} $)

    Figure 11.  Steady state waveforms before and after inductance mismatch ($ {L_{{{d}}({\theta _1})}} \to 0.5{L_{{{d}}({\theta _1})}} $)

    图 12  不同参数失配下的交轴电流脉动

    Figure 12.  Quadrature axis current pulsations under different parameter mismatches

    图 13  参数失配下的转速阶跃响应

    Figure 13.  Speed step responses under parameters mismatch

    图 14  参数失配下的负载阶跃响应

    Figure 14.  Load step responses under parameters mismatch

    图 15  参数失配下ESO的估计结果

    Figure 15.  Estimation results of ESO under parameters mismatch

    表  1  永磁超环面电机参数

    Table  1.   Permanent magnet toroidal motor parameters

    参数 数值
    R 3.8
    np1 4
    z3 28
    z2 12
    k1 0.3
    k2 5
    pn/kW 1.5
    Udc/V 311
    B/(N·m·s) 0.001
    J(kg·m2 0.0015
    $L_{{\mathrm{s}}0}' $/H 0.0012
    $L_{{\mathrm{s}}2}' $/H 0.0004
    $L_{{\mathrm{s}}2}'' $/H 0.003
    ψf/Wb 0.26
    UN/V 250
    fN/Hz 100
    下载: 导出CSV
  • [1] MAO J K, LI H M, YANG L G, et al. Non-cascaded model-free predictive speed control of SMPMSM drive system[J]. IEEE Transactions on Energy Conversion, 2022, 37(1): 153-162. doi: 10.1109/TEC.2021.3090427
    [2] 匡晓霖, 徐金全, 黄春蓉, 等. 六相永磁同步电机驱动控制方式[J]. 北京航空航天大学学报, 2019, 45(7): 1361-1369.

    KUANG X L, XU J Q, HUANG C R, et al. Drive-control modes of six-phase PMSM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1361-1369(in Chinese).
    [3] SUN C, SUN D, CHEN W H, et al. Improved model predictive control with new cost function for hybrid-inverter open-winding PMSM system based on energy storage model[J]. IEEE Transactions on Power Electronics, 2021, 36(9): 10705-10715. doi: 10.1109/TPEL.2021.3061497
    [4] 苏光靖, 李红梅, 李争, 等. 永磁同步直线电机无模型电流控制[J]. 电工技术学报, 2021, 36(15): 3182-3190.

    SU G J, LI H M, LI Z, et al. Research on model-free current control of permanent magnet synchronous linear motor[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3182-3190(in Chinese).
    [5] ZHANG W J, XU Y L, ZHOU G X. Research on a novel transverse flux permanent magnet motor with hybrid stator core and disk-type rotor for industrial robot applications[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11223-11233. doi: 10.1109/TIE.2020.3038060
    [6] ZHOU S L, LI G L, WANG Q J, et al. Geometrical equivalence principle based modeling and analysis for monolayer halbach array spherical motor with cubic permanent magnets[J]. IEEE Transactions on Energy Conversion, 2021, 36(4): 3241-3250. doi: 10.1109/TEC.2021.3070207
    [7] 洪玫, 姚立纲. 基于齿面网格的超环面行星蜗杆传动系统实体建模[J]. 中国机械工程, 2014, 25(7): 867-872.

    HONG M, YAO L G. Entity modeling of toroidal drive based on tooth surface grid[J]. China Mechanical Engineering, 2014, 25(7): 867-872(in Chinese).
    [8] 郝秀红, 朱学军, 许立忠. 机电集成超环面传动系统参数振动研究[J]. 振动与冲击, 2013, 32(22): 113-118. doi: 10.3969/j.issn.1000-3835.2013.22.021

    HAO X H, ZHU X J, XU L Z. Parametric vibration of an electromechanical integrated toroidal drive[J]. Journal of Vibration and Shock, 2013, 32(22): 113-118(in Chinese). doi: 10.3969/j.issn.1000-3835.2013.22.021
    [9] LIU X, LI D, ZUO L. Modeling and control for an integrated permanent magnet toroidal motor drive with nonlinear electromagnetic parameters[J]. Applied Mathematical Modelling, 2021, 89: 154-170. doi: 10.1016/j.apm.2020.07.036
    [10] LIU X, WANG H D. Analytical calculation and analysis of air gap magnetic field for electromechanical integrated toroidal drive[J]. Advances in Mechanical Engineering, 2019, 11(12): 168781401989592.
    [11] 刘欣, 许立忠, 聂岭. 新型超环面混合励磁电机的结构及特性分析[J]. 中国电机工程学报, 2015, 35(20): 5335-5343.

    LIU X, XU L Z, NIE L. Structure and characteristic analysis of a novel toroidal motor with hybrid excitation[J]. Proceedings of the CSEE, 2015, 35(20): 5335-5343(in Chinese).
    [12] XU L Z, LI R, SONG W T. Permanent magnetic toroidal drive with half stator[J]. Advances in Mechanical Engineering, 2017, 9(1): 168781401668631.
    [13] 秦艳忠, 阎彦, 陈炜, 等. 永磁同步电机参数误差补偿-三矢量模型预测电流控制[J]. 电工技术学报, 2020, 35(2): 255-265.

    QIN Y Z, YAN Y, CHEN W, et al. Three-vector model predictive current control strategy for permanent magnet synchronous motor drives with parameter error compensation[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 255-265(in Chinese).
    [14] ZHANG Y C, JIANG H, YANG H T. Model predictive control of PMSM drives based on general discrete space vector modulation[J]. IEEE Transactions on Energy Conversion, 2021, 36(2): 1300-1307. doi: 10.1109/TEC.2020.3036082
    [15] LIU X C, ZHOU L B, WANG J, et al. Robust predictive current control of permanent-magnet synchronous motors with newly designed cost function[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10778-10788. doi: 10.1109/TPEL.2020.2980930
    [16] SUN X D, WU M K, LEI G, et al. An improved model predictive current control for PMSM drives based on current track circle[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 3782-3793. doi: 10.1109/TIE.2020.2984433
    [17] 史涔溦, 解正宵, 陈卓易, 等. 永磁同步电机无参数超局部模型预测控制[J]. 电机与控制学报, 2021, 25(8): 1-8.

    SHI C W, XIE Z X, CHEN Z Y, et al. Model-free predictive control based on ultra-local model for permanent magnet synchronous machines[J]. Electric Machines and Control, 2021, 25(8): 1-8(in Chinese).
    [18] NIU S X, LUO Y X, FU W N, et al. Robust model predictive control for a three-phase PMSM motor with improved control precision[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 838-849. doi: 10.1109/TIE.2020.3013753
    [19] ZHOU Y N, LI H M, LIU R D, et al. Continuous voltage vector model-free predictive current control of surface mounted permanent magnet synchronous motor[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 899-908. doi: 10.1109/TEC.2018.2867218
    [20] MA C W, LI H Y, YAO X L, et al. An improved model-free predictive current control with advanced current gradient updating mechanism[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 11968-11979. doi: 10.1109/TIE.2020.3044809
    [21] YU F, ZHOU C H, LIU X, et al. Model-free predictive current control for three-level inverter-fed IPMSM with an improved current difference updating technique[J]. IEEE Transactions on Energy Conversion, 2021, 36(4): 3334-3343. doi: 10.1109/TEC.2021.3069274
    [22] 赵凯辉, 周瑞睿, 冷傲杰, 等. 一种永磁同步电机的有限集无模型容错预测控制算法[J]. 电工技术学报, 2021, 36(1): 27-38.

    ZHAO K H, ZHOU R R, LENG A J, et al. Finite control set model-free fault-tolerant predictive control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 27-38(in Chinese).
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  113
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 录用日期:  2022-07-25
  • 网络出版日期:  2022-08-11
  • 整期出版日期:  2024-04-29

目录

    /

    返回文章
    返回
    常见问答