留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于马尔可夫决策过程的边缘云业务迁移算法

马安华 潘甦

马安华,潘甦. 基于马尔可夫决策过程的边缘云业务迁移算法[J]. 北京航空航天大学学报,2024,50(6):1931-1939 doi: 10.13700/j.bh.1001-5965.2022.0499
引用本文: 马安华,潘甦. 基于马尔可夫决策过程的边缘云业务迁移算法[J]. 北京航空航天大学学报,2024,50(6):1931-1939 doi: 10.13700/j.bh.1001-5965.2022.0499
MA A H,PAN S. Edge cloud service migration algorithm based on Markov decision process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1931-1939 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0499
Citation: MA A H,PAN S. Edge cloud service migration algorithm based on Markov decision process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1931-1939 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0499

基于马尔可夫决策过程的边缘云业务迁移算法

doi: 10.13700/j.bh.1001-5965.2022.0499
基金项目: 国家自然科学基金(61271235)
详细信息
    通讯作者:

    E-mail:supan@njupt.edu.cn

  • 中图分类号: TN915.02

Edge cloud service migration algorithm based on Markov decision process

Funds: National Natural Science Foundation of China (61271235)
More Information
  • 摘要:

    在移动互联网中,当用户位置发生改变时,业务迁移可用来提升服务质量(QoS)。基于此,提出一种基于马尔可夫决策过程的边缘云业务迁移算法。与对比算法相比,所提算法考虑了不同业务类型对QoS的差异化需求,并全面考虑了业务迁移过程中的收益及开销。所提算法将业务分为实时和非实时2类,将终端的业务运行状态和与服务器的距离作为状态空间,并基于与业务体验紧密相关的可用速率和时延2个QoS指标构建收益函数,同时将业务迁移过程中的系统资源消耗作为迁移开销,通过最大化全局收益来获取最优迁移策略。通过与对比算法的模拟比较,所提算法在多种场景下都有更高的全局收益。

     

  • 图 1  无线蜂窝SDN

    Figure 1.  Wireless cellular SDN

    图 2  业务迁移过程

    Figure 2.  Service migration process

    图 3  终端与服务器距离

    Figure 3.  Distance between terminal and server

    图 4  距离状态转移

    Figure 4.  Distance state transition

    图 5  业务状态转移

    Figure 5.  Service state transition

    图 6  不同算法的时延比较

    Figure 6.  Comparison of latency between different algorithms

    图 7  不同调节参数下迁移开销变化情况

    Figure 7.  Changes of migration costs with different adjusting parameters

    图 8  不同调节参数下全局收益变化情况

    Figure 8.  Changes of overall revenue with different adjusting parameters

    图 9  只有实时业务时全局收益变化情况

    Figure 9.  Changes of overall revenue with only real-time services

    图 10  只有非实时业务时全局收益变化情况

    Figure 10.  Changes of overall revenue with only non-real-time services

    表  1  仿真参数

    Table  1.   Simulation parameters

    实时业务
    到达率
    实时业务
    离去率
    非实时业务
    到达率
    非实时业务
    离去率
    t0/ms $\kappa $ Dm kc pa $ {\partial _1} $/(Mb·s−1) $ {\partial _2} $/(Mb·s−1) a1 a2 b1 b2 Cr Cn $ \lambda $
    0.01 0.005 0.03 0.01 30 0.02 6 0.1 3/4 5 10 0.4 0.6 0.8 0.2 0.3 0.7 0.001
    下载: 导出CSV
  • [1] FOH C H, SRIRAMA S N, WU J S, et al. Guest editors’ introduction: Special section on mobile cloud computing[J]. IEEE Transactions on Cloud Computing, 2019, 7(2): 298-300. doi: 10.1109/TCC.2018.2809260
    [2] AISSIOUI A, KSENTINI A, GUEROUI A M, et al. On enabling 5G automotive systems using follow me edge-cloud concept[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5302-5316. doi: 10.1109/TVT.2018.2805369
    [3] ADDAD R A, DUTRA D L C, BAGAA M, et al. Fast service migration in 5G trends and scenarios[J]. IEEE Network, 2020, 34(2): 92-98. doi: 10.1109/MNET.001.1800289
    [4] BRANDHERM F, WANG L, MÜHLHÄUSER M. A learning-based framework for optimizing service migration in mobile edge clouds[C]//Proceedings of the 2nd International Workshop on Edge Systems, Analytics and Networking. New York: ACM, 2019: 12-17.
    [5] CHEN M, LI W, FORTINO G, et al. A dynamic service migration mechanism in edge cognitive computing[J]. ACM Transactions on Internet Technology, 2019, 19(2): 30.
    [6] GAO Z P, JIAO Q D, XIAO K L, et al. Deep reinforcement learning based service migration strategy for edge computing[C]//Proceedings of the IEEE International Conference on Service-Oriented System Engineering. Piscataway: IEEE Press, 2019: 116-121.
    [7] JIANG X L, SHOKRI-GHADIKOLAEI H, FODOR G, et al. Low-latency networking: Where latency lurks and how to tame it[J]. Proceedings of the IEEE, 2019, 107(2): 280-306. doi: 10.1109/JPROC.2018.2863960
    [8] REN J K, YU G D, HE Y H, et al. Collaborative cloud and edge computing for latency minimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 5031-5044. doi: 10.1109/TVT.2019.2904244
    [9] ANWAR M R, WANG S G, AKRAM M F, et al. 5G-enabled MEC: A distributed traffic steering for seamless service migration of Internet of vehicles[J]. IEEE Internet of Things Journal, 2022, 9(1): 648-661. doi: 10.1109/JIOT.2021.3084912
    [10] LI C L, ZHU L, LI W G, et al. Joint edge caching and dynamic service migration in SDN based mobile edge computing[J]. Journal of Network and Computer Applications, 2021, 177: 102966. doi: 10.1016/j.jnca.2020.102966
    [11] LIN H W, XU X L, ZHAO J, et al. Dynamic service migration in ultra-dense multi-access edge computing network for high-mobility scenarios[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020(1): 191. doi: 10.1186/s13638-020-01805-2
    [12] 郭辉, 芮兰兰, 高志鹏. 车辆边缘网络中基于多参数MDP模型的动态服务迁移策略[J]. 通信学报, 2020, 41(1): 1-14. doi: 10.11959/j.issn.1000-436x.2020012

    GUO H, RUI L L, GAO Z P. Dynamic service migration strategy based on MDP model with multiple parameter in vehicular edge network[J]. Journal on Communications, 2020, 41(1): 1-14 (in Chinese). doi: 10.11959/j.issn.1000-436x.2020012
    [13] ZHOU X B, GE S X, QIU T, et al. Energy-efficient service migration for multi-user heterogeneous dense cellular networks[J]. IEEE Transactions on Mobile Computing, 2023, 22(2): 890-905. doi: 10.1109/TMC.2021.3087198
    [14] WANG S Q, URGAONKAR R, ZAFER M, et al. Dynamic service migration in mobile edge computing based on Markov decision process[J]. IEEE/ACM Transactions on Networking, 2019, 27(3): 1272-1288. doi: 10.1109/TNET.2019.2916577
    [15] YUAN Q, LI J L, ZHOU H B, et al. A joint service migration and mobility optimization approach for vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 9041-9052. doi: 10.1109/TVT.2020.2999617
    [16] LI J, SHEN X M, CHEN L, et al. Service migration in fog computing enabled cellular networks to support real-time vehicular communications[J]. IEEE Access, 2019, 7: 13704-13714. doi: 10.1109/ACCESS.2019.2893571
    [17] PENG Y, LIU L, ZHOU Y Q, et al. Deep reinforcement learning-based dynamic service migration in vehicular networks[C]//Proceedings of the IEEE Global Communications Conference. Piscataway: IEEE Press, 2019: 1-6.
    [18] ABOUAOMAR A, MLIKA Z, FILALI A, et al. A deep reinforcement learning approach for service migration in MEC-enabled vehicular networks[C]//Proceedings of the IEEE 46th Conference on Local Computer Networks. Piscataway: IEEE Press, 2021: 273-280.
    [19] XU M X, ZHOU Q H, WU H M, et al. PDMA: Probabilistic service migration approach for delay-aware and mobility-aware mobile edge computing[J]. Software:Practice and Experience, 2022, 52(2): 394-414. doi: 10.1002/spe.3014
    [20] WANG H M, LI Y X, ZHOU A, et al. Service migration in mobile edge computing: A deep reinforcement learning approach[J]. International Journal of Communication Systems, 2023, 36(1): 1-15.
    [21] CHIANG K H, SHENOY N. A 2-D random-walk mobility model for location-management studies in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2004, 53(2): 413-424. doi: 10.1109/TVT.2004.823544
    [22] SU P, ZHOU W W, GU Q, et al. Network selection algorithm based on spectral bandwidth mapping and an economic model in WLAN & LTE heterogeneous networks[J]. KSII Transactions on Internet and Information Systems, 2015, 9(1): 68-86.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  81
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 录用日期:  2022-08-26
  • 网络出版日期:  2022-11-18
  • 整期出版日期:  2024-06-27

目录

    /

    返回文章
    返回
    常见问答