留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高速飞行器火力控制模型的智能解算方法

杨犇 金飞腾 刘燕斌 陈柏屹 彭寿勇

杨犇,金飞腾,刘燕斌,等. 基于高速飞行器火力控制模型的智能解算方法[J]. 北京航空航天大学学报,2024,50(5):1693-1701 doi: 10.13700/j.bh.1001-5965.2022.0503
引用本文: 杨犇,金飞腾,刘燕斌,等. 基于高速飞行器火力控制模型的智能解算方法[J]. 北京航空航天大学学报,2024,50(5):1693-1701 doi: 10.13700/j.bh.1001-5965.2022.0503
YANG B,JIN F T,LIU Y B,et al. Intelligent solution method based on high-speed aircraft fire control model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1693-1701 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0503
Citation: YANG B,JIN F T,LIU Y B,et al. Intelligent solution method based on high-speed aircraft fire control model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1693-1701 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0503

基于高速飞行器火力控制模型的智能解算方法

doi: 10.13700/j.bh.1001-5965.2022.0503
基金项目: 中央高校基本科研业务费专项资金(NS2021061); 江苏省基础研究计划青年基金项目(BK20200437)
详细信息
    通讯作者:

    E-mail:liuyb@nuaa.edu.cn

  • 中图分类号: V271.4;TB553

Intelligent solution method based on high-speed aircraft fire control model

Funds: Fundamental Research Funds for the Central Universities (NS2021061); Basic Research Plan of Jiangsu Province for Young Scholars (BK20200437)
More Information
  • 摘要:

    研究吸气式高速飞行器的火力控制解算问题,针对高速飞行器较传统的亚音速与超音速飞行器系统响应时间短,飞行环境复杂,对火力控制模型解算要求度高等难点,提出了一种高速飞行器火力控制模型的解算方法。构建了面向高速飞行器平台的火力控制模型,并根据高速飞行器的飞行特性,使用快速模拟法结合阿基米德优化算法求解攻击区域,并反解出载机初始的指令信号。仿真结果表明,该解算方法解算精度高,控制参数少,所实现的攻击区域广,且能发挥高速飞行器较强的飞行性能。

     

  • 图 1  CAV-H模型气动参数拟合曲面

    Figure 1.  Fitting surface of CAV-H model aerodynamic parameters

    图 2  空空任务火力控制示意图

    Figure 2.  Schematic diagram of air-to-air mission fire control

    图 3  不同算法求解Ackley函数的适应度曲线对比

    Figure 3.  Comparison of fitness curves of different algorithms for solving Ackley function

    图 4  火力控制快速模拟方程组解算过程

    Figure 4.  Solving process of fire control fast simulation equations

    图 5  火力控制模型指令解算全过程示意图

    Figure 5.  Schematic diagram of whole process of fire control model instruction solving

    图 6  给定视线角下分别求解出的攻击距离

    Figure 6.  Attack distances solved respectively under given line of sight angles

    图 7  视线角、投放姿态角与最大攻击距离关系曲线

    Figure 7.  Relationship curve of line of sight angle, launch attitude angle and maximum attack distance

    图 8  不同初始速度下以载机为中心的攻击区域

    Figure 8.  Attack area centered on carrier aircraft at different initial speeds

    表  1  算法求解出的函数平均适应值

    Table  1.   Average fitness value of function solved by algorithm

    函 数 PSO PIO QPIO AOA
    Ackley 0.003 0.0057 6.09×10−7 2.80×10−13
    Rastrigin 0.00053 2.61×10−5 0 0
    Rosenbrock 3.34×10−6 7.55×10−18 6.23×10−12 0
    下载: 导出CSV

    表  2  仿真参数设置

    Table  2.   Simulation parameter settings

    仿真条件 条件参数值
    载机初始高度h/km $ 23 $
    载机初始速度V10/(m·s−1) $ 1\;475(Ma\text{=5}) $
    目标平均运动速度VM0/(m·s−1) $ 450(Ma\text{=1}\text{.5}) $
    导弹比例导引系数K $ 4 $
    算法种群规模N $ 30 $
    算法最大迭代次数$ {t_{{\text{max}}}} $ $ 1\;000 $
    算法其他参数 $ {C}_{1}\text{=2},{C}_{2}=6,{C}_{3}=2,{C}_{4}=0.5 $
    下载: 导出CSV

    表  3  约束参数设置

    Table  3.   Constraint parameter settings

    约束参数 条件值
    视线角速度$\dot q$/((°)·s−1) [0,20]
    雷达位标器探测角$\left| \varsigma \right|$/(°) $ \leqslant 114$
    击毁目标所需相对速度${V_{\mathrm{r}}}$/(m·s−1) $5$
    切向过载$\left| {{n_x}} \right|$ $ \leqslant 30$
    法向过载$\left| {{n_y}} \right|$ $ \leqslant 30$
    火力控制命中时间${t_{\mathrm{m}}}$/s $ \leqslant 10$
    下载: 导出CSV

    表  4  算法解算结果对比

    Table  4.   Comparison of algorithm solution results

    视线角/(°)
    初始姿态角/(°) 视线角/(°)
    传统火控
    计算方法
    AOA智能
    解算
    传统火控
    计算方法
    AOA智能
    解算
    0 0 0.0657 7064.666 7065.659
    10 7.5 6.0265 7106.679 7107.513
    20 12.5 12.4944 7233.633 7234.100
    30 20 18.9247 7446.523 7447.495
    40 25 25.64 7750.234 7750.793
    50 30 32.6228 8140.742 8147.354
    下载: 导出CSV
  • [1] 张灿, 王轶鹏, 叶蕾. 国外近十年高超声速飞行器技术发展综述[J]. 战术导弹技术, 2020(6): 81-86.

    ZHANG C, WANG Y P, YE L. Summary of the technological development of overseas hypersonics in the past ten years[J]. Tactical Missile Technology, 2020(6): 81-86(in Chinese).
    [2] SHAO X, SHI Y, ZHANG W. Fault-tolerant quantized control for flexible air-breathing hypersonic vehicles with appointed-time tracking performances[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 57(2): 1261-1273.
    [3] 安昊. 吸气式高超声速飞行器控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    AN H. Research on control method of air-breathing hypersonic vehicles[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [4] 寇英信, 李战武, 陈哨东, 等. 火控系统在航空作战中的作用——作战飞机之“魂”[J]. 电光与控制, 2013, 20(12): 1-5.

    KOU Y X, LI Z W, CHEN S D, et al. The important role of fire control system in air combat-soul of fighters[J]. Electronics Optics & Control, 2013, 20(12): 1-5(in Chinese).
    [5] 程江涛. 航空火力控制原理[M]. 北京: 国防工业出版社, 2017: 2-8.

    CHEN J T. Principles of aviation fire control[M]. Beijing: National Defense Industry Press, 2017: 2-8(in Chinese).
    [6] SHEN H, CAO R, LIU Y, et al. Control-oriented low-speed dynamic modeling and trade-off analysis of air-breathing aerospace vehicles[J]. Journal of Zhejiang University-Science A, 2019, 20(12): 893-907. doi: 10.1631/jzus.A1900366
    [7] 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.

    YANG C, XU Y, XIE C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11(in Chinese).
    [8] 张安, 陈伟, 李相民. 战斗机智能火力与指挥控制系统的发展和关键技术[J]. 电光与控制, 2006, 13(4): 1-5.

    ZHANG A, CHEN W, LI X M, On development and critical technologies of intelligent fire and command control control system for modern fighters[J]. Electronics Optics & Control, 2006, 13(4): 1-5(in Chinese).
    [9] 胡晓峰, 荣明. 智能化作战研究值得关注的几个问题[J]. 指挥与控制学报, 2018, 4(3): 195-200.

    HU X F, RONG M. Several important questions of intelligent warfare research[J]. Journal of Command and Control, 2018, 4(3): 195-200(in Chinese).
    [10] 陈哨东, 刘跃峰. 论航空火力控制系统的智能化[J]. 火力与指挥控制, 2020, 45(8): 1-8. doi: 10.3969/j.issn.1002-0640.2020.08.001

    CHEN S D, LIU Y F. Intelligentization of airborne fire control system[J]. Fire Control & Command Control, 2020, 45(8): 1-8(in Chinese). doi: 10.3969/j.issn.1002-0640.2020.08.001
    [11] 孔维仁, 周德云, 赵艺阳, 等. 基于深度强化学习与自学习的多无人机近距空战机动策略生成算法[J]. 控制理论与应用, 2022, 39(2): 352-362.

    KONG W R, ZHOU D Y, ZHAO Y Y, et al. Maneuvering strategy generation algorithm for multi-UAV in close-range air combat based on deep reinforcement learning and self-play[J]. Control Theory & Applications, 2022, 39(2): 352-362(in Chinese).
    [12] 林诗洁, 董晨, 陈明志, 等. 新型群智能优化算法综述[J]. 计算机工程与应用, 2018, 54(12): 1-9.

    LIN S J, DONG C, CHEN M Z, et al. Summary of new group intelligent optimization algorithms[J]. Computer Engineering and Applications, 2018, 54(12): 1-9(in Chinese).
    [13] GUTJAHR W J. ACO algorithms with guaranteed convergence to the optimal solution[J]. Information Processing Letters, 2002, 82(3): 145-153. doi: 10.1016/S0020-0190(01)00258-7
    [14] HARADA T, ALBA E. Parallel genetic algorithms: a useful survey[J]. ACM Computing Surveys (CSUR), 2020, 53(4): 1-39.
    [15] TALAMONTI M, GALLUZZO M, CHIRICOZZI A, et al. Characteristic of chronic plaque psoriasis patients treated with biologics in Italy during the COVID-19 pandemic: risk analysis from the PSO-BIO-COVID observational study[J]. Expert Opinion on Biological Therapy, 2021, 21(2): 271-277. doi: 10.1080/14712598.2021.1853698
    [16] DUAN H, QIAO P. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning[J]. InternAtional Journal of Intelligent Computing and Cybernetics, 2014, 7(1): 24-37. doi: 10.1108/IJICC-02-2014-0005
    [17] 陈磊, 寇英信, 李战武, 等. 新型CCAR与CCRP融合式轰炸瞄准原理建模与分析[J]. 电光与控制, 2013, 20(8): 58-62.

    CHEN L, KOU Y X, LI Z W, et al. Modeling and analysis of a fused bomb aiming principle integrating CCAR with CCRP[J]. Electronics Optics & Control, 2013, 20(8): 58-62(in Chinese).
    [18] XU Z P, GENG L N. Study on release region of guided bombs based on multi-island genetic algorithm and quadratic programming[C]//Proceedings of 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE). Piscataway: IEEE Press, 2017: 687-691.
    [19] SEONG-GYUN K, JUNGHO P. Computation for launch acceptability region of air-to-surface guided bomb using artificial neural network[J]. Journal of the Korean Society for Aeronautical & Space Sciences, 2018, 46(4): 283-289.
    [20] REN Y, YANG J, XIONG W. Hybrid guidance for common aero vehicle equilibrium glide reentry with multi-constraints[C]//2019 IEEE International Conference on Unmanned Systems and Artificial Intelligence (ICUSAI). Piscataway: IEEE Press, 2019: 340-346.
    [21] 石国祥, 张科, 王佩, 等. 基于侧向机动能力预测的高超声速飞行器再入制导算法研究[J]. 西北工业大学学报, 2020, 38(3): 523-532. doi: 10.3969/j.issn.1000-2758.2020.03.010

    SHI G X, ZHANG K, WANG P, et al. Algorithm of reentry guidance for hypersonic vehicle based on lateral maneuverability prediction[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 523-532(in Chinese). doi: 10.3969/j.issn.1000-2758.2020.03.010
    [22] SUSHNIGDHA G, JOSHI A. Trajectory design of re-entry vehicles using combined pigeon inspired optimization and orthogonal collocation method[J]. IFAC-PapersOnLine, 2018, 51(1): 656-662. doi: 10.1016/j.ifacol.2018.05.110
    [23] RICHIE G. The Common Aero Vehicle-Space delivery system of the future[C]//Proceedings of Space Technology Conference and Exposition. Reston: AIAA, 1999: 4435.
    [24] 汤新民, 李腾, 陈强超, 等. 基于交互式多模型的短期4D航迹预测[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(1): 39-45.

    TANG X M, LI T, CHEN Q C, et al. Short-term 4D trajectory porediction based on interactive multi-models[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2020, 44(1): 39-45(in Chinese).
    [25] HASHIM F A , HUSSAIN K , HOUSSEIN E H , et al. Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems[J]. Applied Intelligence, 2021, 51(3): 1531-1551.
    [26] 石宏庆, 侯庆, 徐榛, 等. 优化算法测试函数综述及应用分析[J]. 计算机科学与应用, 2021, 11(11): 2633-2645.

    SHI H Q, HOU Q, XU Z , et al. Summary and application analysis of optimization algorithm test function[J]. Computer Science and Application, 2021, 11(11): 2633-2645(in Chinese).
    [27] 张亚平. 鸽群智能算法的改进及其在高超声速飞行控制中的应用[D]. 南京: 南京航空航天大学, 2017.

    ZHANG Y P. Improvement of pigeon-inspired optimization algorithm and its application in hypersonic flight control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [28] 黄威, 任洋. 基于自适应步长的空空导弹攻击区解算方法[J]. 电光与控制, 2019, 26(5): 55-58.

    HUANG W, REN Y. Adaptive step-sizebased calculation of air-to-air missile launch envelopes[J]. Electronics Optics & Control, 2019, 26(5): 55-58(in Chinese).
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  136
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 录用日期:  2022-08-12
  • 网络出版日期:  2023-01-12
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答