留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进FPPN的飞控系统故障传播路径分析方法

张晓瑜 张凤琪 郭润夏 吴军

张晓瑜,张凤琪,郭润夏,等. 基于改进FPPN的飞控系统故障传播路径分析方法[J]. 北京航空航天大学学报,2024,50(6):1829-1841 doi: 10.13700/j.bh.1001-5965.2022.0520
引用本文: 张晓瑜,张凤琪,郭润夏,等. 基于改进FPPN的飞控系统故障传播路径分析方法[J]. 北京航空航天大学学报,2024,50(6):1829-1841 doi: 10.13700/j.bh.1001-5965.2022.0520
ZHANG X Y,ZHANG F Q,GUO R X,et al. A fault propagation path analysis method for flight control system based on improved FPPN[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1829-1841 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0520
Citation: ZHANG X Y,ZHANG F Q,GUO R X,et al. A fault propagation path analysis method for flight control system based on improved FPPN[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1829-1841 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0520

基于改进FPPN的飞控系统故障传播路径分析方法

doi: 10.13700/j.bh.1001-5965.2022.0520
基金项目: 国家自然科学基金(62173331,52005500);天津市教委科研计划(2018KJ238,2020KJ013)
详细信息
    通讯作者:

    E-mail:xy_zhang@cauc.edu.cn

  • 中图分类号: V249

A fault propagation path analysis method for flight control system based on improved FPPN

Funds: National Natural Science Foundation of China (62173331,52005500); Scientific Research Project of Tianjin Municipal Education Commission (2018KJ238,2020KJ013)
More Information
  • 摘要:

    针对飞控系统多冗余、多闭环的结构特性,结合有向图模型和模糊Petri网( FPN )模型,构建飞控系统故障传播模糊概率Petri网( FPPN )模型,以解决飞控系统特定结构下的故障传播路径问题。改进的FPPN模型包含飞控系统有向图模型、故障传播特性量化计算模型和故障传播FPPN模型3个部分。采用面向对象技术分析飞控系统的功能行为和物理结构,综合复杂网络理论,构建系统故障传播有向图模型;引入Floyd算法,开展系统耦合关联分析,基于节点的度和边介数定义系统故障传播特性;在有向图模型的基础上,提出相应的结构映射规则,构建飞控系统故障传播FPPN模型,融合改进后的参数量化方法,设定2种推理算法对系统多冗余、闭环结构特性下的故障传播路径进行有效分析。通过数值分析与实例验证,获取飞控系统典型故障传播路径及路径上相关节点的状态值,验证所提方法的有效性。

     

  • 图 1  A320电传操纵系统原理

    Figure 1.  Fly-by-wire control system principle of A320

    图 2  A320飞控系统架构[25]

    Figure 2.  Flight control system architecture of A320[25]

    图 3  方向舵子系统故障传播有向图

    Figure 3.  Directed graph of fault propagation of rudder system

    图 4  FPPN模型的基本映射规则

    Figure 4.  Basic mapping rule of FPPN model

    图 5  FPPN改进结构映射规则

    Figure 5.  Mapping rules of improved FPPN structure

    图 6  方向舵子系统故障传播FPPN模型

    Figure 6.  FPPN model for fault propagation of rudder system

    图 7  模糊推理算法1流程

    Figure 7.  Flow of fuzzy reasoning algorithm 1

    图 8  节点失效分布函数曲线

    Figure 8.  Curve of node failure distribution function

    图 9  节点传播放大效应系数

    Figure 9.  Amplification effect coefficient of node propagation

    图 10  边传播放大效应系数

    Figure 10.  Amplification effect coefficient of edge propagation

    图 11  基础FPN模型与改进FPPN模型确信度对比

    Figure 11.  Comparison of confidence values between basic FPN and improved FPPN models

    图 12  多节点故障传播路径分析图

    Figure 12.  Multi-node fault propagation path analysis diagram

    图 13  单节点故障传播路径分析图

    Figure 13.  Single node fault propagation path analysis diagram

    图 14  单闭环结构故障传播分析

    Figure 14.  Fault propagation analysis of single closed-loop structure

    图 15  多闭环结构故障传播分析

    Figure 15.  Fault propagation analysis of multiple closed-loop structure

    表  1  系统网络结构中各节点对应的部件编号

    Table  1.   Part number corresponding to each node in system network structure

    节点pi 名称
    1 直流汇流条1
    2 直流汇流条2
    3 飞行增稳计算机 1 的供电跳开关
    4 飞行增稳计算机2的供电跳开关
    5 飞行增稳计算机 1
    6 飞行增稳计算机 2
    7 供电跳开关
    8 飞行增稳计算机 1 面板控制按钮
    9 飞行增稳计算机 2 面板控制按钮
    10 方向舵配平复位按钮
    11 方向舵配平按钮
    12 方向舵配平指示器
    13 交流汇流条1
    14 交流汇流条2
    15 方向舵配平继电器 1
    16 方向舵配平继电器 2
    17 方向舵配平作动筒
    18 偏航阻尼作动筒 1 供电跳开关
    19 偏航阻尼作动筒 2 供电跳开关
    20 方向舵伺服控制器G
    21 方向舵伺服控制器B
    22 方向舵伺服控制器Y
    23 方向舵舵面
    下载: 导出CSV

    表  2  各边的失效特性

    Table  2.   Failure characteristics of each edge

    eij Hij eij Hij
    (1,3) 0.0083 (11,5) 0.0073
    (2,4) 0.0083 (11,6) 0.0073
    (2,7) 0.0097 (13,18) 0.0086
    (3,5) 0.0089 (14,19) 0.0086
    (3,15) 0.0093 (15,17) 0.0079
    (4,6) 0.0089 (16,17) 0.0079
    (4,16) 0.0093 (17,5) 0.0065
    (5,12) 0.0078 (17,6) 0.0065
    (5,15) 0.0088 (17,20) 0.0093
    (6,12) 0.0078 (17,21) 0.0093
    (6,16) 0.0088 (17,22) 0.0093
    (7,12) 0.0100 (18,17) 0.0087
    (8,5) 0.0076 (19,17) 0.0087
    (9,6) 0.0076 (20,23) 0.0095
    (10,5) 0.0069 (21,23) 0.0095
    (10,6) 0.0069 (22,23) 0.0095
    下载: 导出CSV

    表  3  节点传播特性

    Table  3.   Node propagation characteristics

    pisipisi
    10.0159130.0159
    20.0317140.0159
    30.0317150.0476
    40.0476160.0476
    50.1111170.1428
    60.1111180.0317
    70.0317190.0317
    80.0159200.0317
    90.0159210.0317
    100.0317220.0317
    110.0317230.0476
    120.0476
    下载: 导出CSV

    表  4  边传播特性

    Table  4.   Edge propagation characteristics

    eij Sij eij Sij
    (1,3) 0.0234 (11,5) 0.0106
    (2,4) 0.0213 (11,6) 0.0106
    (2,7) 0.0042 (13,18) 0.0234
    (3,5) 0.0085 (14,19) 0.0234
    (3,15) 0.0314 (15,17) 0.0897
    (4,6) 0.0063 (16,17) 0.0897
    (4,16) 0.0341 (17,5) 0.0523
    (5,12) 0.0182 (17,6) 0.0523
    (5,15) 0.0705 (17,20) 0.0483
    (6,12) 0.0160 (17,21) 0.0483
    (6,16) 0.0705 (17,22) 0.0483
    (7,12) 0.0042 (18,17) 0.0427
    (8,5) 0.0213 (19,17) 0.0427
    (9,6) 0.0213 (20,23) 0.0142
    (10,5) 0.0106 (21,23) 0.0142
    (10,6) 0.0106 (22,23) 0.0142
    下载: 导出CSV
  • [1] ISERMANN R. Mechatronic systems—Innovative products with embedded control[J]. Control Engineering Practice, 2008, 16(1): 14-29. doi: 10.1016/j.conengprac.2007.03.010
    [2] 康文文, 李浩敏. 基于模型的飞机系统架构多视图表达方法[J]. 系统工程与电子技术, 2021, 43(11): 3266-3277. doi: 10.12305/j.issn.1001-506X.2021.11.27

    KANG W W, LI H M. Multi-view representation method of aircraft system architecture based on model[J]. Systems Engineering and Electronics, 2021, 43(11): 3266-3277(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.11.27
    [3] WANG C N, XING L D, PENG R, et al. Competing failure analysis in phased-mission systems with multiple functional dependence groups[J]. Reliability Engineering & System Safety, 2017, 164: 24-33.
    [4] 管祥民, 赵帅喆. 面向航空网络的机场风险传播网络[J]. 北京航空航天大学学报, 2023, 49(6): 1342-1351.

    GUAN X M, ZHAO S Z. Airport risk propagation network oriented to aviation network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1342-1351(in Chinese).
    [5] 张宏, 吕悦晶. 基于复杂网络的车载自组织网络脆弱性分析[J]. 北京航空航天大学学报, 2021, 47(8): 1543-1549.

    ZHANG H, LYU Y J. Vulnerability of vehicular ad hoc network based on complex network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1543-1549(in Chinese).
    [6] XU Y F, WANG Z, JIANG Y, et al. Small-world network analysis on fault propagation characteristics of water networks in eco-industrial parks[J]. Resources, Conservation and Recycling, 2019, 149: 343-351. doi: 10.1016/j.resconrec.2019.05.040
    [7] LIU X F, AN S Q. Failure propagation analysis of aircraft engine systems based on complex network[C]//Proceedings of the 3rd International Symposium on Aircraft Airworthiness. Amsterdam: Elseiver, 2014, 80: 506-521.
    [8] LUAN L, SHEN G X, ZHANG Y Z, et al. Identification of key components of CNC lathe based on dynamic influence of fault propagation[J]. Applied Sciences, 2022, 12(12): 6187. doi: 10.3390/app12126187
    [9] 袁健宝, 王政, 徐一凡, 等. 基于复杂网络边负载分配理论的化工过程级联故障风险传播路径[J]. 化工进展, 2019, 38(8): 3525-3533.

    YUAN J B, WANG Z, XU Y F, et al. Risk propagation path of cascading fault in chemical process based on edge load distribution in complex network[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3525-3533(in Chinese).
    [10] MI J H, LI Y F, YANG Y J, et al. Reliability assessment of complex electromechanical systems under epistemic uncertainty[J]. Reliability Engineering & System Safety, 2016, 152: 1-15.
    [11] CHEN X L, WANG J, ZHOU J L. Probability density estimation and Bayesian causal analysis based fault detection and root identification[J]. Industrial & Engineering Chemistry Research, 2018, 57(43): 14656-14664.
    [12] AMRANI N B, SAINTIS L, SARSRI D, et al. Evaluating the predicted reliability of mechatronic systems: State of the art[EB/OL]. (2016-06-19)[2022-06-19]. http://arxiv.org/abs/1606.05875.
    [13] SHARMA R K, SHARMA P. Qualitative and quantitative approaches to analyse reliability of a mechatronic system: A case[J]. Journal of Industrial Engineering International, 2015, 11(2): 253-268. doi: 10.1007/s40092-015-0098-6
    [14] KUBO K, JANG S, TAKASHI T, et al. Quasi-Monte Carlo sampling method for simulation-based dynamic probabilistic risk assessment of nuclear power plants[J]. Journal of Nuclear Science and Technology, 2022, 59(3): 357-367. doi: 10.1080/00223131.2021.1971119
    [15] PICCIALLI F, CUOMO S, GIAMPAOLO F, et al. Path prediction in IoT systems through Markov chain algorithm[J]. Future Generation Computer Systems, 2020, 109: 210-217. doi: 10.1016/j.future.2020.03.053
    [16] 阎芳, 向晨阳, 董磊, 等. DIMA架构下飞机全电刹车系统故障传播行为分析与评估[J]. 航空学报, 2021, 42(9): 324674.

    YAN F, XIANG C Y, DONG L, et al. Analysis and evaluation of fault propagation behavior of aircraft all-electric brake system under DIMA architecture[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 324674(in Chinese).
    [17] 申桂香, 栾兰, 张英芝, 等. 加工中心组件故障传播影响力评估[J]. 吉林大学学报(工学版), 2022, 52(1): 63-69.

    SHEN G X, LUAN L, ZHANG Y Z, et al. Fault propagation impact assessment of machining center components[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(1): 63-69(in Chinese).
    [18] LIU H C, LUAN X, LIN W L, et al. Grey reasoning Petri nets for large group knowledge representation and reasoning[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(12): 3315-3329. doi: 10.1109/TFUZZ.2019.2949770
    [19] SHI H, WANG L, LI X Y, et al. A novel method for failure mode and effects analysis using fuzzy evidential reasoning and fuzzy Petri nets[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(6): 2381-2395. doi: 10.1007/s12652-019-01262-w
    [20] WANG X L, LU F M, ZHOU M C, et al. A synergy-effect-incorporated fuzzy Petri net modeling paradigm with application in risk assessment[J]. Expert Systems with Applications, 2022, 199: 117037. doi: 10.1016/j.eswa.2022.117037
    [21] LI W J, HE M, SUN Y B, et al. A novel layered fuzzy Petri nets modelling and reasoning method for process equipment failure risk assessment[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103953. doi: 10.1016/j.jlp.2019.103953
    [22] CHENG H B, HE Z Y, WANG Q, et al. Fault diagnosis method based on Petri nets considering service feature of information source devices[J]. Computers and Electrical Engineering, 2015, 46: 1-13. doi: 10.1016/j.compeleceng.2015.06.016
    [23] LI L, XIE Y F, CEN L H, et al. A novel cause analysis approach of grey reasoning Petri net based on matrix operations[J]. Applied Intelligence, 2022, 52(1): 1-18. doi: 10.1007/s10489-021-02377-4
    [24] 刘久富, 张信哲, 汪恒宇, 等. 部分可观Petri网故障的量子贝叶斯诊断[J]. 北京航空航天大学学报, 2022, 48(7): 1125-1134.

    LIU J F, ZHANG X Z, WANG H Y, et al. Partial observable Petri nets fault diagnosis with quantum Bayesian learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1125-1134(in Chinese).
    [25] 王国庆, 谷青范, 王淼, 等. 新一代综合化航空电子系统构架技术研究[J]. 航空学报, 2014, 35(6): 1473-1486.

    WANG G Q, GU Q F, WANG M, et al. Research on the architecture technology for new generation integrated avionics system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1473-1486(in Chinese).
    [26] ZHOU J F. A fuzzy Petri-net approach for fault analysis considering factor influences[J]. IEEE Access, 2020, 8: 72229-72238. doi: 10.1109/ACCESS.2020.2986306
    [27] WANG Y H, LI M, SHI H. A method of searching fault propagation paths in mechatronic systems based on MPPS model[J]. Journal of Central South University, 2018, 25(9): 2199-2218. doi: 10.1007/s11771-018-3908-3
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  90
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 录用日期:  2022-09-30
  • 网络出版日期:  2022-10-14
  • 整期出版日期:  2024-06-27

目录

    /

    返回文章
    返回
    常见问答