-
摘要:
热风洞能够为高温热电偶动态标定和航空发动机叶片热强度测试等应用场景提供均匀且稳定的温度场,如何对热风洞所产生的热气流进行宽温范围的温度控制是一个难点。为此,建立了热风洞燃油流量和燃烧室温度的数学模型;设计了一种内环为增量式比例积分微分(PID)和外环为无模型自适应控制(MFAC)的级联控制方法,增量式PID控制器控制燃油流量,MFAC控制器控制燃烧室温度,实现了对燃烧室温度的有效控制;进行了不同目标温度的数值模拟和试验研究,并与FuzzyPID-PID级联控制方案和传统的级联PID控制方案进行了对比测试。试验结果确认了所提控制方案的可行性与优越性。
Abstract:For the dynamic calibration of high-temperature thermocouples, the thermal strength test of aero-engine blades, and other application scenarios, the thermal wind tunnel can offer a well-distributed and stable temperature field. How to control the thermal flow generated by thermal wind tunnel in a wide temperature range is a difficult problem. Therefore, the mathematical models of fuel flow rate and combustor temperature in hot wind tunnel are established. A cascade control method is designed, in which the inner loop is incremental proportional integral derivative (PID) and the outer loop is model-free adaptive control (MFAC). The incremental PID controller controls the fuel flow rate, and the MFAC controller is used to control the combustor temperature, which can effectively control the temperature of the combustor. A comparison test between the classic cascade PID control method and the cascade FuzzyPID-PID control method is conducted, along with numerical simulation and experimental analysis of various target temperatures. The experimental results confirm the feasibility and superiority of the proposed control scheme.
-
-
[1] 赵时安, 廖理, 陈勇. 1700℃热校准风洞[J]. 航空计测技术, 2000, 20(4): 3-6.ZHAO S A, LIAO L, CHEN Y. 1700°C hot wind tunnel for thermal calibration[J]. Aviation Metrology & Measurement, 2000, 20(4): 3-6(in Chinese). [2] MASLOV A A, SHUMSKY V V, YAROSLAVTSEV M I. High-enthalpy hot-shot wind tunnel with combined heating and stabilization of parameters[J]. Thermophysics and Aeromechanics, 2013, 20(5): 527-538. doi: 10.1134/S0869864313050011 [3] 樊玉光, 李年祺. 湍流模型对旋流燃烧数值模拟的影响[J]. 石油化工应用, 2017, 36(9): 128-131. doi: 10.3969/j.issn.1673-5285.2017.09.032FAN Y G, LI N Q. Influence of turbulence model on numerical simulation of swirl burner[J]. Petrochemical Industry Application, 2017, 36(9): 128-131(in Chinese). doi: 10.3969/j.issn.1673-5285.2017.09.032 [4] LI Y H, CAI C Z, LEE K M, et al. A novel cascade temperature control system for a high-speed heat-airflow wind tunnel[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4): 1310-1319. doi: 10.1109/TMECH.2013.2262077 [5] 朱家厅, 陈祖希, 宁振雷. 基于前馈控制器的数字阀动态性能研究[J]. 液压与气动, 2016, 40(1): 114-117. doi: 10.11832/j.issn.1000-4858.2016.01.023ZHU J T, CHEN Z X, NING Z L. The dynamic characteristic research of digital valve based on feed-forward control[J]. Chinese Hydraulics and Pneumatics, 2016, 40(1): 114-117(in Chinese). doi: 10.11832/j.issn.1000-4858.2016.01.023 [6] 刘忠洋, 孙宝寿, 王英, 等. 改进灰色预测模糊PID在气动阀门系统中的应用研究[J]. 传感器与微系统, 2020, 39(11): 5.LIU Z Y, SUN B S, WANG Y, et al. Application research of improved gray prediction fuzzy PID in pneumatic valve system[J]. Transducer and Microsystem Technologies, 2020, 39(11): 5(in Chinese). [7] TROJNAR A, OSTALCZYK P. Simulation of the fuel gas valve PID controller in closed loop system[C]//Proceedings of the International Interdisciplinary PhD Workshop. Piscataway: IEEE Press, 2018: 13-16. [8] MITTAL M, BABU M M, KANUPRIYA M. Application of particle swarm optimization technique in seating velocity control of electromagnetic valve actuator[C]//Proceedings of the 9th International Conference on Control, Mechatronics and Automation. Piscataway: IEEE Press, 2021: 177-181. [9] 侯忠生, 韩志刚. 非线性系统鲁棒无模型学习自适应控制[J]. 控制与决策, 1995, 10(2): 137-142. doi: 10.3321/j.issn:1001-0920.1995.02.009HOU Z S, HAN Z G. Robust modelless learning adaptive control of nonlinear systems[J]. Control and Decision, 1995, 10(2): 137-142(in Chinese). doi: 10.3321/j.issn:1001-0920.1995.02.009 [10] CAO R M, HOU Z S, HUANG J. The model-free learning adaptive control for DC motor rotate speed systems[C]//Proceedings of the Chinese Control Conference. Piscataway: IEEE Press, 2007: 738-742. [11] 侯忠生. 无模型自适应控制的现状与展望[J]. 控制理论与应用, 2006, 23(4): 586-592.HOU Z S. On model-free adaptive control: The state of the art and perspective[J]. Control Theory and Applications, 2006, 23(4): 586-592(in Chinese). [12] HOU Z S, YAN J W. Model free adaptive control based freeway ramp metering with feedforward iterative learning controller[J]. Acta Automatica Sinica, 2009, 35(5): 588-595. [13] 董娜, 常建芳, 韩学烁, 等. 大时滞系统的无模型控制方法及应用[J]. 哈尔滨工程大学学报, 2018, 39(12): 1987-1993.DONG N, CHANG J F, HAN X S, et al. Model-free control method and its application forlarge time-delay systems[J]. Journal of Harbin Engineering University, 2018, 39(12): 1987-1993(in Chinese). [14] LIU S, SUN J, JI H, et al. Model free adaptive control for the temperature adjustment of UGI coal gasification process in synthetic ammonia industry[C]//Proceedings of the 9th Data Driven Control and Learning Systems Conference. Piscataway: IEEE Press, 2020: 976-981. [15] XU Z G, NIU S, WANG L, et al. Design of furnace temperature control system for billet heating furnace based on fuzzy-MFAC[C]//Proceedings of the 3rd International Conference on Mechatronics, Robotics and Automation. Piscataway: IEEE Press, 2020: 126-129.