留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方形通道内超临界压力二氧化碳传热恶化数值研究

王彦红 李雨健 李洪伟 东明

王彦红,李雨健,李洪伟,等. 方形通道内超临界压力二氧化碳传热恶化数值研究[J]. 北京航空航天大学学报,2024,50(6):1888-1897 doi: 10.13700/j.bh.1001-5965.2022.0533
引用本文: 王彦红,李雨健,李洪伟,等. 方形通道内超临界压力二氧化碳传热恶化数值研究[J]. 北京航空航天大学学报,2024,50(6):1888-1897 doi: 10.13700/j.bh.1001-5965.2022.0533
WANG Y H,LI Y J,LI H W,et al. Numerical study on heat transfer deterioration of supercritical-pressure carbon dioxide in a square channel[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1888-1897 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0533
Citation: WANG Y H,LI Y J,LI H W,et al. Numerical study on heat transfer deterioration of supercritical-pressure carbon dioxide in a square channel[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1888-1897 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0533

方形通道内超临界压力二氧化碳传热恶化数值研究

doi: 10.13700/j.bh.1001-5965.2022.0533
基金项目: 吉林省教育厅科技项目(JJKH20220100KJ); 东北电力大学青年博士科研助推计划(BSZT02202102)
详细信息
    通讯作者:

    E-mail:lihongwei@neepu.edu.cn

  • 中图分类号: V231.1

Numerical study on heat transfer deterioration of supercritical-pressure carbon dioxide in a square channel

Funds: Science and Technology Project of Education Department of Jilin Province (JJKH20220100KJ); Young Doctoral Research Boost Program of Northeast Electric Power University (BSZT02202102)
More Information
  • 摘要:

    基于二氧化碳代替碳氢燃料进行航空发动机热防护的应用,开展方形冷却通道内超临界二氧化碳传热恶化数值研究。探究沿通道轴向和周向的换热特征,通过温度、局部流量、流线的分布情况揭示传热恶化的原因,进一步通过边界层分析阐述传热恶化的演变过程。考察运行压力和壁面粗糙度对换热的影响机制。获得不同运行压力和壁面粗糙度下的传热恶化临界热流密度,建立临界热流密度预测准则。结果表明:通道顶部壁面附近高温类气态层、局部流量减小和流线畸变是传热恶化的特征,缓冲层出现湍动能剧减和流速峰值是传热恶化的原因。提高运行压力和增大壁面粗糙度有利于抑制传热恶化问题,所建准则(误差±15%)可实现对传热恶化临界热流密度的良好预测。

     

  • 图 1  方形通道示意图

    Figure 1.  Schematic diagram of square channel

    图 2  热物性随温度的变化情况[12]

    Figure 2.  Thermal physical properties variations with temperature[12]

    图 3  网格无关性分析

    Figure 3.  Grid independence analysis

    图 4  方截面网格

    Figure 4.  Square-section grid

    图 5  管内壁温度随局部加热长度的变化情况(q=70 kW·m−2)

    Figure 5.  Variation of inner-wall temperature with local heating length (q=70 kW·m−2)

    图 6  不同压力下换热参数沿流动方向的变化情况

    Figure 6.  Heat transfer parameters variations along the flow direction at different pressure conditions

    图 7  不同壁面内壁温度和热流密度的轴向分布情况

    Figure 7.  Inner-wall temperature and heat flux axial distributions at different wall surfaces

    图 8  固体和流体参数的分布

    Figure 8.  Solid and fluid parameters distributions

    图 9  边界层流体参数的分布

    Figure 9.  Fluid parameters distributions in the boundary layer

    图 10  不同压力下固体域与流体域参数分布情况

    Figure 10.  Parameters distributions in solid and fluid domains at different pressure conditions

    图 11  不同壁面粗糙度下换热参数沿流动方向的变化

    Figure 11.  Heat transfer parameters variations along the flow direction at different wall roughness conditions

    图 12  不同壁面粗糙度下固体域与流体域参数分布

    Figure 12.  Parameters distributions in solid and fluid domains at different wall roughness conditions

    图 13  不同压力下临界热流密度的分布

    Figure 13.  Critical heat flux distributions at different pressure conditions

    图 14  临界热流密度的误差分析

    Figure 14.  Error analysis of the critical heat flux density

  • [1] TAO Z, CHENG Z Y, ZHU J Q, et al. Correction of low-Reynolds number turbulence model to hydrocarbon fuel at supercritical pressure[J]. Aerospace Science and Technology, 2018, 77: 156-167. doi: 10.1016/j.ast.2018.02.038
    [2] ZHANG C J, XU G Q, SUN J N, et al. Modified k-ε model for RP-3 kerosene in a horizontal circular tube at supercritical pressure[J]. Applied Thermal Engineering, 2016, 102: 1403-1411. doi: 10.1016/j.applthermaleng.2016.03.118
    [3] XU K K, MENG H. Numerical study of fluid flows and heat transfer of aviation kerosene with consideration of fuel pyrolysis and surface coking at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2016, 95: 806-814. doi: 10.1016/j.ijheatmasstransfer.2015.12.050
    [4] XU K K, SUN X, MENG H. Conjugate heat transfer, endothermic fuel pyrolysis and surface coking of aviation kerosene in ribbed tube at supercritical pressure[J]. International Journal of Thermal Sciences, 2018, 132: 209-218. doi: 10.1016/j.ijthermalsci.2018.06.008
    [5] 周星宇, 章思龙, 秦江, 等. 半圆形截面Zigzag型通道对超临界碳氢燃料裂解流动换热特性的影响规律[C]//第六届空天动力联合会议论文集. 北京: 中国科协航空发动机产学联合体, 2021: 2503-2513.

    ZHOU X Y, ZHANG S L, QIN J, et al. Influence of semicircular cross-section Zigzag channel on pyrolysis flow and heat transfer characteristics of supercritical hydrocarbon fuel[C]//Proceedings of the 6th JCAP. Beijing: CAST Alliance for Aero-Engine Industry and Academy, 2021: 2503-2513.
    [6] HU J Y, ZHOU J, WANG N, et al. Numerical study of buoyancy’s effect on flow and heat transfer of kerosene in a tiny horizontal square tube at supercritical pressure[J]. Applied Thermal Engineering, 2018, 141: 1070-1079. doi: 10.1016/j.applthermaleng.2018.05.131
    [7] SUN X, MENG H, ZHENG Y. Asymmetric heating and buoyancy effects on heat transfer of hydrocarbon fuel in a horizontal square channel at supercritical pressures[J]. Aerospace Science and Technology, 2019, 93: 105358. doi: 10.1016/j.ast.2019.105358
    [8] 张卓远, 黄世璋, 高效伟. 超临界压力下正癸烷在水平矩形冷却通道内的流动传热数值模拟[J]. 航空学报, 2018, 39(12): 122297.

    ZHANG Z Y, HUANG S Z, GAO X W. Numerical simulation of heat transfer of n-decane under supercritical pressure in horizontal rectangular cooling channels[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122297 (in Chinese).
    [9] WANG L, PAN Y C, DER LEE J, et al. Convective heat transfer characteristics of supercritical carbon dioxide in vertical miniature tubes of a uniform heating experimental system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120833. doi: 10.1016/j.ijheatmasstransfer.2020.120833
    [10] BAE Y Y, KIM H Y, KANG D J. Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1295-1308. doi: 10.1016/j.expthermflusci.2010.06.001
    [11] JAJJA S A, ZADA K R, FRONK B M. Experimental investigation of supercritical carbon dioxide in horizontal microchannels with non-uniform heat flux boundary conditions[J]. International Journal of Heat and Mass Transfer, 2019, 130: 304-319. doi: 10.1016/j.ijheatmasstransfer.2018.10.027
    [12] WANG X C, XIANG M J, HUO H J, et al. Numerical study on nonuniform heat transfer of supercritical pressure carbon dioxide during cooling in horizontal circular tube[J]. Applied Thermal Engineering, 2018, 141: 775-787. doi: 10.1016/j.applthermaleng.2018.06.019
    [13] DIAO L, CHEN Y, LI Y X. Nonuniform heat transfer of supercritical pressure carbon dioxide under turbulent cooling condition in circular tubes at various inclination angles[J]. Nuclear Engineering and Design, 2019, 352: 110153. doi: 10.1016/j.nucengdes.2019.110153
    [14] ZHANG S J, XU X X, LIU C, et al. The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2018, 125: 274-289. doi: 10.1016/j.ijheatmasstransfer.2018.04.033
    [15] WANG K Z, XU X X, WU Y Y, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluid, 2015, 99: 112-120. doi: 10.1016/j.supflu.2015.02.001
    [16] 黄志豪, 李光熙, 唐桂华, 等. 单侧加热方形通道内超临界水传热研究[J]. 化工学报, 2022, 73(4): 1523-1533.

    HUANG Z H, LI G X, TANG G H, et al. Numerical investigation on heat transfer of supercritical water in a side-heated square channel[J]. CIESC Journal, 2022, 73(4): 1523-1533 (in Chinese).
    [17] 许婉婷, 许波, 王鑫, 等. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545.

    XU W T, XU B, WANG X, et al. Heat transfer characteristics of supercritical CO2 in square microchannels[J]. CIESC Journal, 2022, 73(4): 1534-1545 (in Chinese).
    [18] PIZZARELLI M, NASUTI F, ONOFRI M, et al. Heat transfer modeling for supercritical methane flowing in rocket engine cooling channels[J]. Applied Thermal Engineering, 2015, 75: 600-607. doi: 10.1016/j.applthermaleng.2014.10.008
    [19] 张萌, 孙冰. 甲烷跨临界传热恶化影响因素分析[J]. 推进技术, 2020, 41(2): 382-389.

    ZHANG M, SUN B. Analysis of influence factors for methane transcritical heat transfer deterioration[J]. Journal of Propulsion Technology, 2020, 41(2): 382-389 (in Chinese).
    [20] 张萌, 孙冰. 人工粗糙度对矩形弯曲管道流动与传热数值模拟[J]. 火箭推进, 2020, 46(1): 20-27. doi: 10.3969/j.issn.1672-9374.2020.01.003

    ZHANG M, SUN B. Numerical simulation of flow and heat transfer in a curved rectangular channel with artificial roughness[J]. Journal of Rocket Propulsion, 2020, 46(1): 20-27 (in Chinese). doi: 10.3969/j.issn.1672-9374.2020.01.003
    [21] 王彦红, 陆英楠, 李素芬, 等. 周向非均匀加热水平圆管内超临界正癸烷换热特性[J]. 化工学报, 2021, 72(3): 1342-1353.

    WANG Y H, LU Y N, LI S F, et al. Heat transfer characteristics of supercritical n-decane in horizontal circular tubes with circumferentially non-uniform heating[J]. CIESC Journal, 2021, 72(3): 1342-1353 (in Chinese).
    [22] KIM J K, JEON H K, LEE J S. Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon-dioxide[J]. International Journal of Heat and Mass Transfer, 2007, 50(23-24): 4908-4911. doi: 10.1016/j.ijheatmasstransfer.2007.06.026
    [23] WEN Q L, GU H Y. Numerical simulation of heat transfer deterioration phenomenon in supercritical water through vertical tube[J]. Annals of Nuclear Energy, 2010, 37(10): 1272-1280. doi: 10.1016/j.anucene.2010.05.022
    [24] KAO M T, LEE M, FERNG Y M, et al. Heat transfer deterioration in a supercritical water channel[J]. Nuclear Engineering and Design, 2010, 240(10): 3321-3328. doi: 10.1016/j.nucengdes.2010.06.028
    [25] ZHANG G, ZHANG H, GU H Y, et al. Experimental and numerical investigation of turbulent convective heat transfer deterioration of supercritical water in vertical tube[J]. Nuclear Engineering and Design, 2012, 248: 226-237. doi: 10.1016/j.nucengdes.2012.03.026
  • 加载中
图(14)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  74
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 录用日期:  2022-08-07
  • 网络出版日期:  2022-09-16
  • 整期出版日期:  2024-06-27

目录

    /

    返回文章
    返回
    常见问答