留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

折叠翼飞行器气动弹性变体飞行仿真平台

徐浩 韩景龙 奚勇 贾成龙 孙钊

徐浩,韩景龙,奚勇,等. 折叠翼飞行器气动弹性变体飞行仿真平台[J]. 北京航空航天大学学报,2024,50(6):1921-1930 doi: 10.13700/j.bh.1001-5965.2022.0536
引用本文: 徐浩,韩景龙,奚勇,等. 折叠翼飞行器气动弹性变体飞行仿真平台[J]. 北京航空航天大学学报,2024,50(6):1921-1930 doi: 10.13700/j.bh.1001-5965.2022.0536
XU H,HAN J L,XI Y,et al. Aeroelastic morphing flight simulation platform for a folding wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1921-1930 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0536
Citation: XU H,HAN J L,XI Y,et al. Aeroelastic morphing flight simulation platform for a folding wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1921-1930 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0536

折叠翼飞行器气动弹性变体飞行仿真平台

doi: 10.13700/j.bh.1001-5965.2022.0536
基金项目: 国家自然科学基金(11472133)
详细信息
    通讯作者:

    E-mail:hjlae@nuaa.edu.cn

  • 中图分类号: V212

Aeroelastic morphing flight simulation platform for a folding wing aircraft

Funds: National Natural Science Foundation of China (11472133)
More Information
  • 摘要:

    折叠翼飞行器的变体过程伴随质量分布、刚度分布及气动载荷分布的大幅动态变化,是一个高度复杂的动力学过程。为实现该过程各种动力学问题的有效分析,基于共享内存技术开发了一套高性能的耦合计算程序,并在此基础上整合了Adams多体动力学计算软件、非定常气动力计算程序及飞行控制技术,搭建了折叠翼的气动弹性变体飞行仿真平台。基于该平台,对折叠翼进行了气动弹性分析和飞行变体过程仿真,验证了平台强大的计算和分析能力。

     

  • 图 1  折叠翼飞行器示意图

    Figure 1.  Schematic diagram of a folding wing aircraft

    图 2  耦合仿真流程

    Figure 2.  Coupling simulation flow

    图 3  气动弹性变体飞行仿真平台

    Figure 3.  Aeroelastic morphing flight simulation platform

    图 4  折叠翼Adams仿真模型

    Figure 4.  Adams simulation model of folding wing

    图 5  气动力建模流程

    Figure 5.  Aerodynamic modeling process

    图 6  折叠翼气动弹性响应计算模型

    Figure 6.  Model used in aeroelastic response calculation for folded wing

    图 7  受扰后后缘翼尖时域响应($ \theta = {90^ \circ } $)

    Figure 7.  Time domain response of disturbed trailing edge wing tip ($\theta= $90°)

    图 8  颤振计算结果对比

    Figure 8.  Comparison of flutter characteristics

    图 9  折叠过程的气动弹性响应

    Figure 9.  Aeroelastic response during folding process

    图 10  折叠翼飞行仿真模型

    Figure 10.  Folding wing flight simulation model

    图 11  飞行折叠过程动力学响应

    Figure 11.  Dynamic response during flight-folding process

    图 12  不同折叠速度下的动力学响应

    Figure 12.  Dynamic response at different folding speeds

    图 13  稳态和瞬态仿真结果对比

    Figure 13.  Comparison of simulation results by steady-state and transient simulation

    表  1  飞行仿真模型主要几何参数

    Table  1.   Main geometric parameters of flight simulation model

    折叠角/(°) 重心位置xcg/m 转动惯量Iy/(kg·m2)
    0 (2.12,0,0) 4502
    120 (2.12,0,0.24) 4675
    下载: 导出CSV
  • [1] RODRIGUEZ A. Morphing aircraft technology survey[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 1258.
    [2] LEE D H, WEISSHAAR T. Aeroelastic studies on a folding wing configuration[C]//Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2005: 1996.
    [3] SNYDER M P, SANDERS B, EASTEP F E, et al. Vibration and flutter characteristics of a folding wing[J]. Journal of Aircraft, 2009, 46(3): 791-799. doi: 10.2514/1.34685
    [4] 顾鑫. 柔性折叠翼飞行器飞行动力学问题研究[D]. 南京: 南京航空航天大学, 2012: 24-34.

    GU X. Flight dynamic studies of a flexible folding wing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 24-34(in Chinese).
    [5] 迟圣威. 折叠翼颤振理论分析和计算方法[D]. 南京: 南京航空航天大学, 2011: 36-44.

    CHI S W. Theoretical and computational flutter study for folding wing configuration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 36-44(in Chinese).
    [6] ZHAO Y H, HU H Y. Prediction of transient responses of a folding wing during the morphing process[J]. Aerospace Science and Technology, 2013, 24(1): 89-94. doi: 10.1016/j.ast.2011.09.001
    [7] HU W, YANG Z C, GU Y S. Aeroelastic study for folding wing during the morphing process[J]. Journal of Sound and Vibration, 2016, 365: 216-229. doi: 10.1016/j.jsv.2015.11.043
    [8] REICH G, BOWMAN J, SANDERS B, et al. Development of an integrated aeroelastic multi-body morphing simulation tool[C]//Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006: 1892.
    [9] BOWMAN J, REICH G, SANDERS B, et al. Simulation tool for analyzing complex shape-changing mechanisms in aircraft[C]//Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2006: 6727.
    [10] SCARLETT J, CANFIELD R, SANDERS B. Multibody dynamic aeroelastic simulation of a folding wing aircraft[C]//Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006: 2135.
    [11] 沈怡颹, 何益康, 高四宏, 等. 基于同步仿真的卫星姿轨控软件验证方法[J]. 飞控与探测, 2018, 1(2): 23-27.

    SHEN Y W, HE Y K, GAO S H, et al. A verification method of satellite attitude and orbit control software based on synchronous simulation[J]. Flight Control & Detection, 2018, 1(2): 23-27(in Chinese).
    [12] 李增刚. ADAMS入门详解与实例[M]. 2版. 北京: 国防工业出版社, 2014: 127-135.

    LI Z G. Detailed introduction and examples of ADAMS[M]. 2nd ed. Beijing: National Defense Industry Press, 2014: 127-135(in Chinese).
    [13] 纪玉杰, 杨强, 孙志礼, 等. 应用C语言编写ADAMS用户自定义函数的研究[J]. 机械设计与制造, 2006(1): 101-103. doi: 10.3969/j.issn.1001-3997.2006.01.046

    JI Y J, YANG Q, SUN Z L, et al. The research on writing user-written subroutine of ADAMS in C programming language[J]. Machinery Design & Manufacture, 2006(1): 101-103(in Chinese). doi: 10.3969/j.issn.1001-3997.2006.01.046
    [14] 赵永辉. 气动弹性力学与控制[M]. 北京: 科学出版社, 2007: 310-319.

    ZHAO Y H. Aeroelastic mechanics and control[M]. Beijing: Science Press, 2007: 310-319(in Chinese).
    [15] 管德. 非定常空气动力计算[M]. 北京: 北京航空航天大学出版社, 1991.

    GUAN D. Unsteady aerodynamic calculation[M]. Beijing: Beihang University Press, 1991(in Chinese).
    [16] HARDER R L, DESMARAIS R N. Interpolation using surface splines[J]. Journal of Aircraft, 1972, 9(2): 189-191. doi: 10.2514/3.44330
    [17] KARPEL M. Design for active flutter suppression and gust alleviation using state-space aeroelastic modeling[J]. Journal of Aircraft, 1982, 19(3): 221-227. doi: 10.2514/3.57379
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  10
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 录用日期:  2022-09-29
  • 网络出版日期:  2022-11-04
  • 整期出版日期:  2024-06-27

目录

    /

    返回文章
    返回
    常见问答