留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中断离港航班恢复的改进NSGA2算法

陈可嘉 吴钧涛

陈可嘉,吴钧涛. 中断离港航班恢复的改进NSGA2算法[J]. 北京航空航天大学学报,2024,50(6):1784-1793 doi: 10.13700/j.bh.1001-5965.2022.0552
引用本文: 陈可嘉,吴钧涛. 中断离港航班恢复的改进NSGA2算法[J]. 北京航空航天大学学报,2024,50(6):1784-1793 doi: 10.13700/j.bh.1001-5965.2022.0552
CHEN K J,WU J T. Improved NSGA2 algorithm for disrupted departure flights recovery[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1784-1793 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0552
Citation: CHEN K J,WU J T. Improved NSGA2 algorithm for disrupted departure flights recovery[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1784-1793 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0552

中断离港航班恢复的改进NSGA2算法

doi: 10.13700/j.bh.1001-5965.2022.0552
基金项目: 国家社会科学基金(18BGL003)
详细信息
    通讯作者:

    E-mail:kjchen@fzu.edu.cn

  • 中图分类号: V355

Improved NSGA2 algorithm for disrupted departure flights recovery

Funds: National Social Science Foundation of China (18BGL003)
More Information
  • 摘要:

    为解决因突发事件产生的航空公司航班中断问题,对中断的离港航班进行恢复,构建最小化航空公司总延误成本和最小化乘客总延误时间的双目标优化模型,设计基于支配强度的自适应非支配排序遗传算法(ANSGA2-DS)。提出3种改进操作:快速支配排序方法、新的拥挤距离和自适应精英保留策略。通过福州长乐国际机场某航空公司的运行数据对所提算法进行验证,实验结果表明:与传统的先规划先服务方法相比,所提算法得到的解有大幅优化;与ε约束法相比,所提算法的求解时间总体上低于ε约束法,且求解结果接近ε约束法所得最优结果;与NSGA2、MOEAD等多目标优化算法相比,所提算法表现出更优的性能,能够有效且高效地解决问题,为航空公司达成优化的解决方案提供基础。

     

  • 图 1  ANSGA2-DS流程

    Figure 1.  Flow of ANSGA2-DS

    图 2  编码方案

    Figure 2.  Coding scheme

    图 3  ANSGA2-DS、NSGA2和MOEAD在3种场景中解的分布

    Figure 3.  Distribution of solutions of ANSGA2-DS, NSGA2 and MOEAD in three scenarios

    图 4  不同算法中每个航班延误成本的比较

    Figure 4.  Comparison of each flight delay cost in different algorithms

    图 5  不同算法中每个航班延误时间的比较

    Figure 5.  Comparison of each flight delay time in different algorithms

    表  1  3种场景的信息

    Table  1.   Information of three scenarios

    场景 航班数 中断持续时间/min 可分配的时隙数量
    A 8 193 8
    B 14 215 14
    C 25 289 25
    下载: 导出CSV

    表  2  场景A的信息

    Table  2.   Information of scenario A

    航班号 原始离港时间 分配的时隙时间 乘客人数
    1 11:10 11:45 134
    2 11:25 12:20 330
    3 11:47 12:16 182
    4 11:59 12:55 149
    5 12:05 13:55 222
    6 12:28 13:58 379
    7 12:55 14:00 112
    8 12:59 14:23 310
    下载: 导出CSV

    表  3  场景B的信息

    Table  3.   Information of scenario B

    航班号 原始离港时间 分配的时隙时间 乘客人数
    1 13:30 14:06 248
    2 13:40 14:17 330
    3 13:45 14:49 332
    4 13:55 14:53 207
    5 13:59 14:58 225
    6 14:20 14:59 218
    7 14:29 15:08 150
    8 14:29 15:20 137
    9 14:40 15:32 167
    10 14:48 15:36 129
    11 14:50 15:47 83
    12 14:51 15:57 283
    13 14:54 16:05 180
    14 15:37 17:05 332
    下载: 导出CSV

    表  4  场景C的信息

    Table  4.   Information of scenario C

    航班号 原始离港时间 分配的时隙时间 乘客人数
    1 16:20 16:50 134
    2 16:25 16:58 109
    3 16:34 17:37 317
    4 16:40 17:55 339
    5 17:48 18:32 129
    6 17:55 19:58 285
    7 18:23 20:05 300
    8 18:40 20:11 225
    9 18:49 20:15 134
    10 19:15 20:22 78
    11 19:45 20:25 109
    12 19:48 20:30 285
    13 19:59 20:32 167
    14 19:59 20:46 225
    15 20:13 20:51 233
    16 20:27 21:55 86
    17 20:30 22:00 137
    18 20:38 22:04 135
    19 20:40 22:32 285
    20 20:56 22:41 112
    21 21:00 22:50 317
    22 21:09 22:59 285
    23 21:15 23:00 202
    24 21:25 23:05 134
    25 22:30 23:09 129
    下载: 导出CSV

    表  5  不同参数组合结果

    Table  5.   Results of different parameter combination values

    实验编号 组合参数 求解时间/s 解的数量 Z1/美元 Z2/min 平均间距/%
    Np ${p_{\text{m}}}$ ${p_{\text{c}}}$
    1 40 0.1 0.8 92.73 6 252519.67 265044 4.85
    2 40 0.2 0.3 64.71 5 253105.21 270816 7.36
    3 40 0.3 0.5 76.58 4 252137.38 265281 4.80
    4 80 0.1 0.3 158.69 8 253409.55 275075 6.52
    5 80 0.2 0.5 182.62 7 253223.97 264024 4.73
    6 80 0.3 0.8 220.19 7 252830.51 262543 3.99
    7 120 0.1 0.5 248.54 6 253572.43 267058 5.49
    8 120 0.2 0.8 328.45 8 252246.05 263460 4.12
    9 120 0.3 0.3 236.78 8 252798.59 280937 8.47
    下载: 导出CSV

    表  6  FSFS、ECA和ANSGA2-DS的计算结果

    Table  6.   Computational results of FSFS, ECA and ANSGA2-DS

    场景Z1/美元Z2/min求解时间/sPareto 解个数最大
    公平
    价格/%
    ANSGA2-DS
    与 ECA的
    平均间距/%
    FSFSECAANSGA2-DSFSFSECAANSGA2-DSFSFSECAANSGA2-DSFSFSECAANSGA2-DS
    A282825.07134789.56135268.1212552149608149832 14.5723.42 714.234.88
    B389964.38251490.85253142.78301887243765259467 345.9140.73 65.614.71
    C739695.86524925.70531868.435638448416997436982 9316.28149.95 44.366.26
    下载: 导出CSV

    表  7  ANSGA2-DS、NSGA2和MOEAD的最优值、最大公平价格与反向世代距离的比较

    Table  7.   Comparison of the optimal value, the maximum price of fairness and IGD among ANSGA2-DS, NSGA2 and MOEAD

    场景Z1/美元Z2/min最大公平价格/%反向世代距离/105
    ANSGA2-DSNSGA2MOEADANSGA2-DSNSGA2MOEADANSGA2-DSNSGA2MOEADANSGA2-DSNSGA2MOEAD
    A135268.1136414.04138989.714983215458615794014.2319.3823.711.181.361.58
    B253142.78254551.42255670.782594672620362657895.617.058.332.832.912.98
    C531868.44536551.42540642.784369824420364574674.365.827.126.486.707.42
    下载: 导出CSV
  • [1] 何坚, 果红艳, 姚远, 等. 基于有效中转时间预测的不正常航班恢复技术[J]. 北京航空航天大学学报, 2022, 48(3): 384-393.

    HE J, GUO H Y, YAO Y, et al. Irregular flight recovery technique based on accurate transit time prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 384-393(in Chinese).
    [2] MANYEM P. Disruption recovery at airports: Ground holding, curfew restrictions and an approximation algorithm[J]. Journal of the Operations Research Society of China, 2021, 9(4): 819-852. doi: 10.1007/s40305-020-00338-1
    [3] SU Y, XIE K X, WANG H J, et al. Airline disruption management: A review of models and solution methods[J]. Engineering, 2021, 7(4): 435-447. doi: 10.1016/j.eng.2020.08.021
    [4] MANYEM P. Disruption recovery at airports: Integer programming formulations and polynomial time algorithms[J]. Discrete Applied Mathematics, 2018, 242: 102-117. doi: 10.1016/j.dam.2017.11.010
    [5] EVLER J, ASADI E, PREIS H, et al. Airline ground operations: Optimal schedule recovery with uncertain arrival times[J]. Journal of Air Transport Management, 2021, 92: 102021. doi: 10.1016/j.jairtraman.2021.102021
    [6] LEE J, MARLA L, JACQUILLAT A. Dynamic disruption management in airline networks under airport operating uncertainty[J]. Transportation Science, 2020, 54(4): 973-997. doi: 10.1287/trsc.2020.0983
    [7] MCCARTY L A, COHN A E M. Preemptive rerouting of airline passengers under uncertain delays[J]. Computers & Operations Research, 2018, 90: 1-11.
    [8] XU Y, PRATS X. Linear holding for airspace flow programs: A case study on delay absorption and recovery[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 1042-1051. doi: 10.1109/TITS.2018.2842918
    [9] LIU T K, CHEN C H, CHOU J H. Optimization of short-haul aircraft schedule recovery problems using a hybrid multiobjective genetic algorithm[J]. Expert Systems with Applications, 2010, 37(3): 2307-2315. doi: 10.1016/j.eswa.2009.07.068
    [10] JI C L, GAO M G, ZHANG X, et al. A novel rescheduling algorithm for the airline recovery with flight priorities and airport capacity constraints[J]. Asia-Pacific Journal of Operational Research, 2021, 38(5): 328-340.
    [11] HU Y Z, LIAO H, ZHANG S, et al. Multiple objective solution approaches for aircraft rerouting under the disruption of multi-aircraft[J]. Expert Systems with Applications, 2017, 83: 283-299.
    [12] SHAO Q, SHAO M X, BIN Y P, et al. Flight recovery method of regional multiairport based on risk control model[J]. Mathematical Problems in Engineering, 2020, 2020: 7105381.
    [13] 田文, 杨帆, 尹嘉男, 等. 航路时空资源分配的多目标优化方法[J]. 交通运输工程学报, 2020, 20(6): 218-226.

    TIAN W, YANG F, YIN J N, et al. Multi-objective optimization method of air route space-time resources allocation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 218-226(in Chinese).
    [14] SANTOS B F, WORMER M M E C, ACHOLA T A O, et al. Airline delay management problem with airport capacity constraints and priority decisions[J]. Journal of Air Transport Management, 2017, 63: 34-44.
    [15] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [16] 赖文星, 邓忠民. 基于支配强度的NSGA2改进算法[J]. 计算机科学, 2018, 45(6): 187-192.

    LAI W X, DENG Z M. Improved NSGA2 algorithm based on dominant strength[J]. Computer Science, 2018, 45(6): 187-192(in Chinese).
    [17] 蔡卓森, 戴凌全, 刘海波, 等. 基于支配强度的NSGA-Ⅱ改进算法在水库多目标优化调度中的应用[J]. 武汉大学学报(工学版), 2021, 54(11): 999-1007.

    CAI Z S, DAI L Q, LIU H B, et al. Application of improved NSGA-Ⅱ algorithm based on dominance strength in multi-objective operation of cascade reservoirs[J]. Engineering Journal of Wuhan University, 2021, 54(11): 999-1007(in Chinese).
    [18] ZOGRAFOS K G, JIANG Y. A bi-objective efficiency-fairness model for scheduling slots at congested airports[J]. Transportation Research Part C:Emerging Technologies, 2019, 102: 336-350. doi: 10.1016/j.trc.2019.01.023
    [19] FIGUEIREDO E M N, LUDERMIR T B, BASTOS-FILHO C J A. Many objective particle swarm optimization[J]. Information Sciences, 2016, 374: 115-134. doi: 10.1016/j.ins.2016.09.026
    [20] MONTGOMERY D C. Design and analysis of experiments[M]. New York: John Wiley & Sons, 2020.
    [21] BACH L, HASLE G, WØHLK S. A lower bound for the node, edge, and arc routing problem[J]. Computers & Operations Research, 2013, 40(4): 943-952.
    [22] ZHANG Q F, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  85
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 录用日期:  2022-09-14
  • 网络出版日期:  2022-10-14
  • 整期出版日期:  2024-06-27

目录

    /

    返回文章
    返回
    常见问答