留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多分类字典学习的灵敏度编码重建算法

段继忠 王成菊

段继忠,王成菊. 基于多分类字典学习的灵敏度编码重建算法[J]. 北京航空航天大学学报,2024,50(7):2123-2132 doi: 10.13700/j.bh.1001-5965.2022.0571
引用本文: 段继忠,王成菊. 基于多分类字典学习的灵敏度编码重建算法[J]. 北京航空航天大学学报,2024,50(7):2123-2132 doi: 10.13700/j.bh.1001-5965.2022.0571
DUAN J Z,WANG C J. Sensitivity encoding reconstruction algorithm based on multi-category dictionary learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2123-2132 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0571
Citation: DUAN J Z,WANG C J. Sensitivity encoding reconstruction algorithm based on multi-category dictionary learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2123-2132 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0571

基于多分类字典学习的灵敏度编码重建算法

doi: 10.13700/j.bh.1001-5965.2022.0571
基金项目: 国家自然科学基金(61861023)
详细信息
    通讯作者:

    E-mail:duanjz@kust.edu.cn

  • 中图分类号: TP391

Sensitivity encoding reconstruction algorithm based on multi-category dictionary learning

Funds: National Natural Science Foundation of China (61861023)
More Information
  • 摘要:

    灵敏度编码(SENSE) 方法利用多个线圈的灵敏度信息来减少扫描时间,利用SENSE模型重构的图像易存在伪影,不利于医学诊断。为减少重叠伪影,提高磁共振成像质量,将分类图像块的快速正交字典引入SENSE模型中,得到一种基于多分类字典学习的灵敏度编码重建算法。该算法通过对图像块分类,在每个类中训练字典,得到不同类别的多个字典,运用交替方向乘子法进行图像重构。在人体脑部和膝盖数据上进行实验,结果表明:相比于TV-SENSE、TV-LORAKS-SENSE和LpTV-SENSE算法,所提算法的平均信噪比分别提高了1.53 dB、1.22 dB和1.05 dB,重构图像与参考图像的一致性较高,图像细节部分和边缘轮廓信息保留完整。

     

  • 图 1  AF=5、24像素×24像素ACS二维泊松圆盘欠采样时4个数据的信噪比随时间变化曲线

    Figure 1.  SNR versus time curves for four data at two-dimensional Poisson discs undersampling when acceleration factor is 5 and 24 pixel×24 pixel ACS

    图 2  AF=4时4种算法在欠采样数据1上的重构图像和误差

    Figure 2.  Reconstructed and error images for four algorithms on undersampled data 1 when acceleration factor is 4

    图 3  AF=4时4种算法在欠采样数据2上的重构图像和误差

    Figure 3.  Reconstructed and error images for four algorithms on undersampled data 2 when acceleration factor is 4

    图 4  AF=4时4种算法在欠采样数据3上的重构图像和误差

    Figure 4.  Reconstructed and error images for four algorithms on undersampled data 3 when acceleration factor is 4

    图 5  AF=4时4种算法在欠采样数据4上的重构图像和误差

    Figure 5.  Reconstructed and error images for four algorithms on undersampled data 4 when acceleration factor is 4

    图 6  22个数据在AF=3~7、24像素×24像素ACS 泊松圆盘欠采样时FDLCP-SENSE1与其他算法SNR的差值

    Figure 6.  SNR difference between FDLCP-SENSE1 and other algorithms for 22 data when acceleration factor is 3−7 and 24 pixel × 24 pixel ACS Poisson disc undersampling

    图 7  AF=4时对欠采样数据3重构的收敛性分析

    Figure 7.  Convergence analysis of reconstruction on data 3 when acceleration factor is 4 under undersampling

    表  1  AF=3~7时数据1在泊松圆盘欠采样下各算法的重构结果

    Table  1.   Reconstruction results of different algorithms for data 1 under Poisson disc undersampling when acceleration factor is 3−7

    算法SNR/dBSSIMHFEN
    AF=3AF=4AF=5AF=6AF=7AF=3AF=4AF=5AF=6AF=7AF=3AF=4AF=5AF=6AF=7
    TV-SENSE[15]24.0622.4020.9720.0519.070.97290.963 50.952 20.942 60.931 50.113 90.147 80.184 80.211 60.245 9
    TV-LORAKS-SENSE[16]23.8022.3221.1020.2419.280.970 00.960 80.951 00.942 60.932 20.108 60.139 40.171 60.196 30.230 0
    LpTV-SENSE[17]24.1922.6121.3220.4319.450.973 70.964 60.954 30.944 50.933 00.111 20.140 50.173 10.199 00.231 8
    FDLCP-SENSE124.8423.4022.3521.5920.520.977 10.969 80.962 10.955 70.944 90.100 30.125 20.150 30.169 10.203 9
    下载: 导出CSV

    表  2  AF=3~7时数据2在泊松圆盘欠采样下各算法的重构结果

    Table  2.   Reconstruction results of different algorithms for data 2 under Poisson disc undersampling when acceleration factor is 3−7

    算法SNR/dBSSIMHFEN
    AF=3AF=4AF=5AF=6AF=7AF=3AF=4AF=5AF=6AF=7AF=3AF=4AF=5AF=6AF=7
    TV-SENSE[15]23.7722.2420.8719.7919.040.966 20.955 40.943 70.931 60.922 40.105 50.134 20.167 50.198 70.220 5
    TV-LORAKS-SENSE[16]23.9722.5721.4020.3119.620.967 10.957 10.947 70.937 10.928 80.092 90.115 70.142 50.170 90.190 8
    LpTV-SENSE[17]24.1322.5721.2820.1219.290.969 40.958 70.947 90.933 70.922 90.098 00.125 30.154 60.188 20.210 6
    FDLCP-SENSE125.0923.8022.6121.4420.710.975 20.968 20.959 80.948 60.941 10.085 40.105 30.130 30.159 50.177 9
    下载: 导出CSV

    表  3  AF=3~7时数据3在泊松圆盘欠采样下各算法的重构结果

    Table  3.   Reconstruction results of different algorithms for data 3 under Poisson disc undersampling when acceleration factor is 3−7

    算法SNR/dBSSIMHFEN
    AF=3AF=4AF=5AF=6AF=7AF=3AF=4AF=5AF=6AF=7AF=3AF=4AF=5AF=6AF=7
    TV-SENSE[15]27.7826.3225.4124.5823.770.981 40.976 20.972 50.969 10.965 00.075 50.091 80.105 60.118 40.133 2
    TV-LORAKS-SENSE[16]27.7626.4425.6424.8924.180.980 50.975 30.971 80.968 70.965 20.070 90.085 20.097 50.109 80.122 9
    LpTV-SENSE[17]27.8526.4825.6424.9824.250.980 90.975 60.971 80.968 80.965 10.074 50.088 80.101 20.110 40.123 8
    FDLCP-SENSE128.6327.4726.7226.1525.510.984 10.979 90.976 90.974 30.971 50.065 90.077 20.087 40.095 80.105 3
    下载: 导出CSV

    表  4  AF=3~7时数据4在泊松圆盘欠采样下各算法的重构结果

    Table  4.   Reconstruction results of different algorithms for data 4 under Poisson disc undersampling when acceleration factor is 3−7

    算法SNR/dBSSIMHFEN
    AF=3AF=4AF=5AF=6AF=7AF=3AF=4AF=5AF=6AF=7AF=3AF=4AF=5AF=6AF=7
    TV-SENSE[15]19.0317.7316.9516.2015.690.923 50.902 40.888 90.877 30.866 60.227 50.278 20.309 10.345 50.376 6
    TV-LORAKS-SENSE[16]19.1517.9517.2516.5916.080.924 20.903 60.891 10.880 80.870 90.201 90.250 20.276 90.309 50.341 1
    LpTV-SENSE[17]19.0117.8217.1916.5916.110.921 60.899 70.887 10.876 50.865 20.216 00.267 60.289 50.317 90.343 8
    FDLCP-SENSE120.0118.9318.3017.7517.340.936 20.919 10.908 00.897 50.889 90.182 00.216 20.236 30.254 50.274 1
    下载: 导出CSV

    表  5  AF=3~7时22个数据在泊松圆盘欠采样下平均SNR、平均SSIM、平均HFEN差值

    Table  5.   Difference of mean SNR, mean SSIM, and mean HFEN for 22 sets of data at Poisson disc undersampling when acceleration factor is 3−7

    算法平均SNR/dB平均SSIM平均HFEN
    AF=3AF=4AF=5AF=6AF=7AF=3AF=4AF=5AF=6AF=7AF=3AF=4AF=5AF=6AF=7
    FDLCP-SENSE1 &
    TV-SENSE
    1.231.441.611.681.710.055 60.072 10.082 30.090 60.097 2−0.032 8−0.045 4−0.055 8−0.063 9−0.069 5
    FDLCP-SENSE1 &
    TV-LORAKS-SENSE
    0.851.061.261.431.510.007 10.009 80.012 30.014 00.015 3−0.014 2−0.026 5−0.037 5−0.049 4−0.058 2
    FDLCP-SENSE1 &
    LpTV-SENSE
    0.861.011.101.131.140.029 60.038 20.043 20.047 50.050 6−0.023 8−0.031 4−0.036 8−0.041 5−0.043 9
    下载: 导出CSV

    表  6  AF=4时不同算法在欠采样的4个数据上的重构时间

    Table  6.   Reconstruction time of different algorithms on four data at undersampling when acceleration factor is 4 s

    数据 TV-SENSE TV-LORAKS-
    SENSE
    LpTV-SENSE FDLCP-SENSE1
    数据1 38 153 15 27
    数据2 53 281 23 31
    数据3 213 866 41 63
    数据4 196 319 40 105
    下载: 导出CSV
  • [1] LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195. doi: 10.1002/mrm.21391
    [2] SONG L X, ZHANG J G, WANG Q. MRI reconstruction based on three regularizations: Total variation and two wavelets[J]. Biomedical Signal Processing and Control, 2016, 30: 64-69. doi: 10.1016/j.bspc.2016.06.003
    [3] WANG S S, XIA Y, LIU Q G, et al. Fenchel duality based dictionary learning for restoration of noisy images[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5214-5225. doi: 10.1109/TIP.2013.2282900
    [4] ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745. doi: 10.1109/TIP.2006.881969
    [5] RAVISHANKAR S, BRESLER Y. MR image reconstruction from highly undersampled k-space data by dictionary learning[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041. doi: 10.1109/TMI.2010.2090538
    [6] QU X B, GUO D, NING B D, et al. Undersampled MRI reconstruction with patch-based directional wavelets[J]. Magnetic Resonance Imaging, 2012, 30(7): 964-977. doi: 10.1016/j.mri.2012.02.019
    [7] ZHAN Z F, CAI J F, GUO D, et al. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction[J]. IEEE Transactions on Bio-Medical Engineering, 2016, 63(9): 1850-1861. doi: 10.1109/TBME.2015.2503756
    [8] FRANCAVILLA M A, LEFKIMMIATIS S, VILLENA J F, et al. Maxwell parallel imaging[J]. Magnetic Resonance in Medicine, 2021, 86(3): 1573-1585. doi: 10.1002/mrm.28718
    [9] 蒋明峰, 朱礼涛, 汪亚明, 等. 结合非线性GRAPPA与SENSE的并行磁共振成像[J]. 浙江大学学报(工学版), 2014, 48(10): 1865-1870.

    JIANG M F, ZHU L T, WANG Y M, et al. Parallel MRI based on combination of nonlinear GRAPPA and SENSE[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(10): 1865-1870 (in Chinese).
    [10] PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE: Sensitivity encoding for fast MRI[J]. Magnetic Resonance in Medicine, 1999, 42(5): 952-962. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
    [11] GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized auto-calibrating partially parallel acquisitions (GRAPPA)[J]. Magnetic Resonance in Medicine, 2002, 47(6): 1202-1210. doi: 10.1002/mrm.10171
    [12] LUSTIG M, PAULY J M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space[J]. Magnetic Resonance in Medicine, 2010, 64(2): 457-471. doi: 10.1002/mrm.22428
    [13] 吴春俐, 朱学欢, 翟江南, 等. 基于快速分裂Bregman迭代的全变差正则化SENSE磁共振图像重建[J]. 东北大学学报(自然科学版), 2014, 35(1): 24-28.

    WU C L, ZHU X H, ZHAI J N, et al. Total variation regularized SENSE MRI reconstruction based on fast split Bregman iteration[J]. Journal of Northeastern University (Natural Science), 2014, 35(1): 24-28(in Chinese).
    [14] 李建武, 康杨, 周金鹏. PF-FICOTA-SENSE: 一种 MRI 快速重构方法[J]. 自动化学报, 2020, 46(5): 897-908.

    LI J W, KANG Y, ZHOU J P. PF-FICOTA-SENSE: An MRI fast reconstruction method[J]. Acta Automatica Sinica, 2020, 46(5): 897-908(in Chinese).
    [15] RAMANI S, FESSLER J A. Parallel MR image reconstruction using augmented Lagrangian methods[J]. IEEE Transactions on Medical Imaging, 2011, 30(3): 694-706. doi: 10.1109/TMI.2010.2093536
    [16] KIM T H, SETSOMPOP K, HALDAR J P. LORAKS makes better SENSE: Phase-constrained partial Fourier SENSE reconstruction without phase calibration[J]. Magnetic Resonance in Medicine, 2017, 77(3): 1021-1035. doi: 10.1002/mrm.26182
    [17] 鲍中文. 磁共振成像的稀疏重构算法研究[D]. 昆明: 昆明理工大学, 2020: 1-70.

    BAO Z W. Research on sparse reconstruction algorithm of magnetic resonance imaging[D]. Kunming: Kunming University of Science and Technology, 2020: 1-70(in Chinese) .
    [18] YANG J F, ZHANG Y, YIN W T. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288-297. doi: 10.1109/JSTSP.2010.2042333
    [19] AFONSO M V, BIOUCAS-DIAS J M, FIGUEIREDO M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing, 2010, 19(9): 2345-2356. doi: 10.1109/TIP.2010.2047910
    [20] SOUZA R, BENTO M, NOGOVITSYN N, et al. Dual-domain cascade of U-nets for multi-channel magnetic resonance image reconstruction[J]. Magnetic Resonance Imaging, 2020, 71: 140-153.
    [21] KNOLL F, ZBONTAR J, SRIRAM A, et al. FastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning[J]. Radiology Artificial Intelligence, 2020, 2(1): e190007.
    [22] SAWYER A M, LUSTIG M, ALLEY M, et al. Creation of fully sampled MR data repository for compressed sensing of the knee[C]//Proceedings of the SMRT Conference. Salt Lake City: SMRT, 2013.
    [23] HUANG J Z, ZHANG S T, METAXAS D. Efficient MR image reconstruction for compressed MR imaging[J]. Medical Image Analysis, 2011, 15(5): 670-679. doi: 10.1016/j.media.2011.06.001
    [24] CORRIVEAU P, WEBSTER A. VQEG evaluation of objective methods of video quality assessment[J]. SMPTE Journal, 1999, 108(9): 645-648. doi: 10.5594/J17594
    [25] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  89
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 录用日期:  2022-08-15
  • 网络出版日期:  2022-09-28
  • 整期出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    常见问答