留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超目标强跟踪CKF自适应交互多模型跟踪算法

罗亚伦 廖育荣 李兆铭 倪淑燕

罗亚伦,廖育荣,李兆铭,等. 高超目标强跟踪CKF自适应交互多模型跟踪算法[J]. 北京航空航天大学学报,2024,50(7):2272-2283 doi: 10.13700/j.bh.1001-5965.2022.0587
引用本文: 罗亚伦,廖育荣,李兆铭,等. 高超目标强跟踪CKF自适应交互多模型跟踪算法[J]. 北京航空航天大学学报,2024,50(7):2272-2283 doi: 10.13700/j.bh.1001-5965.2022.0587
LUO Y L,LIAO Y R,LI Z M,et al. Strong tracking CKF adaptive interactive multiple model tracking algorithm based on hypersonic target[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2272-2283 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0587
Citation: LUO Y L,LIAO Y R,LI Z M,et al. Strong tracking CKF adaptive interactive multiple model tracking algorithm based on hypersonic target[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2272-2283 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0587

高超目标强跟踪CKF自适应交互多模型跟踪算法

doi: 10.13700/j.bh.1001-5965.2022.0587
基金项目: 国家自然科学基金(61805283)
详细信息
    通讯作者:

    E-mail:1151943632@qq.com

  • 中图分类号: V249.4

Strong tracking CKF adaptive interactive multiple model tracking algorithm based on hypersonic target

Funds: National Natural Science Foundation of China (61805283)
More Information
  • 摘要:

    高超目标运动状态复杂且具有高机动性,传统的交互多模型(IMM)跟踪精度低、收敛速度慢,基于此,提出了一种基于多重渐消因子的强跟踪容积卡尔曼滤波(CKF)自适应交互多模型(AIMM)跟踪算法。以IMM-CKF算法为基础,通过对CKF算法的结构进行分析,在时间更新和量测更新的协方差矩阵中引入强跟踪算法的渐消因子,在线实时调整滤波增益,减小模型不匹配导致的滤波精度下降;在IMM的模型集中选择Singer模型、“当前”统计模型和Jerk模型,并针对模型扩维导致CKF算法中无法 Cholesky分解的问题引入奇异值分解(SVD)算法;对IMM算法中马尔可夫矩阵提出自适应算法,通过模型似然函数值对转移概率进行自适应修正,增强匹配模型所占比例。仿真结果表明:所提算法跟踪收敛速度提高了约37.5%,跟踪精度提高了16.51%。

     

  • 图 1  坐标系关系

    Figure 1.  Coordinate system relationship

    图 2  ENU坐标系下的目标量测

    Figure 2.  Target measurement in ENU coordinate system

    图 3  ECEF坐标系与ENU坐标系

    Figure 3.  ECEF coordinate system and ENU coordinate system

    图 4  IMM算法计算步骤

    Figure 4.  Computational steps of IMM algorithm

    图 5  HTV-2弹道轨迹

    Figure 5.  HTV-2 ballistic trajectory

    图 6  3轴方向位置均方根误差

    Figure 6.  Root mean square error of position in three-axis direction

    图 7  渐消因子算法位置均方根误差

    Figure 7.  Root mean square error of position of fading factor algorithm

    图 8  高超目标轨迹跟踪

    Figure 8.  Hypersonic target trajectory tracking

    图 9  高超目标x轴轨迹跟踪

    Figure 9.  Hypersonic target x-axis trajectory tracking

    图 10  高超目标y轴轨迹跟踪

    Figure 10.  Hypersonic target y-axis trajectory tracking

    图 11  高超目标z轴轨迹跟踪

    Figure 11.  Hypersonic target z-axis trajectory tracking

    图 12  Jerk模型位置增益矩阵迹值变化

    Figure 12.  Change of trace value of position gain matrix of Jerk model

    图 13  后验误差协方差矩阵的迹

    Figure 13.  Trace of posterior error covariance matrix

    图 14  $x$轴方向位置均方根误差

    Figure 14.  Root mean square error of position in x-axis direction

    图 15  $y$轴方向位置均方根误差

    Figure 15.  Root mean square error of position in y-axis direction

    图 16  z轴方向位置均方根误差

    Figure 16.  Root mean square error of position in z-axis direction

    图 17  改进算法位置均方根误差

    Figure 17.  Root mean square error of position of improred algorithm

    图 18  $x$轴方向速度均方根误差

    Figure 18.  Root mean square error of velocity in x-axis direction

    图 19  $y$轴方向速度均方根误差

    Figure 19.  Root mean square error of velocity in y-axis direction

    图 20  z轴方向速度均方根误差

    Figure 20.  Root mean square error of velocity in z-axis direction

    图 21  改进算法速度均方根误差

    Figure 21.  Root mean square error of velocity of improved algorithms

    图 22  IMM-CKF模型概率

    Figure 22.  IMM-CKF model probability

    图 24  模型似然函数比值

    Figure 24.  Model likelihood function ratio

    图 23  AIMM-STCKF模型概率

    Figure 23.  AIMM-STCKF model probability

    表  1  仿真初始参数设置

    Table  1.   Simulation initial parameter settings

    参数 数值
    仿真步长/s 1
    弱化因子 1
    遗忘因子 0.95
    采样时长/s 350
    初始模型概率 ${\boldsymbol{u}} = \left[ {\begin{array}{*{20}{c}} {1/3}&{1/3}&{1/3} \end{array}} \right]$
    马尔可夫转移矩阵 $ {{\boldsymbol{P}}_{\text{m}}} = \left[{\begin{array}{*{20}{c}} 0.9&0.05&0.05 \\ 0.05&0.9&0.05 \\ 0.05&0.05&0.9 \\ \end{array}}\right] $
    状态误差协方差矩阵 $ {\boldsymbol{Q}} = {\text{diag}}\left( {{{100}^2}}, {{{100}^2}}, {{{100}^2}} \right) $
    观测噪声协方差矩阵 $ {\boldsymbol{R}} = {\text{diag}}\left( {{{0.5}^2}}, {{{0.5}^2}}, {{{500}^2}} \right) $
    初始误差协方差矩阵 $\begin{gathered} {\boldsymbol{P}} = {\text{diag}}\left({5\;000^2},{ {3\;00}}{{ {0}}^2}{ {,10}}{{ {0}}^2}{ {,}}{5\;000^2},\right. \\ \qquad \left. { {3\;00}}{{ {0}}^2}{ {, }} { {10}}{{ {0}}^2}{ {,}}{5\;000^2}{ {, 3\;00}}{{ {0}}^2}{ {,10}}{{ {0}}^2}\right) \\ \end{gathered} $
    下载: 导出CSV

    表  2  3种算法均方根误差均值对比

    Table  2.   Comparison of mean values of root mean square error of three algorithms

    算法 位置均方根误差均值/m 速度均方根误差均值/(m·s−1)
    x y z 整体 x y z 整体
    IMM-CKF 449.2 213.7 164 537.3 52.7 56.2 51.9 104.1
    IMM-STCKF 447.9 207 158.2 530.2 37.9 56.3 49.5 92.7
    AIMM-STCKF 381.9 171.3 97.1 448.6 19.4 27.7 41.4 66.9
    下载: 导出CSV
  • [1] 周宏仁, 敬忠良, 王培德, 等. 机动目标跟踪[M]. 北京: 国防工业出版社, 1991: 1-35.

    ZHOU H R, JING Z L, WANG P D, et al. Maneuvering target tracking[M]. Beijing: National Defense Industry Press, 1991: 1-35(in Chinese).
    [2] SINGER R A. Estimating optimal tracking filter performance for manned maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, AES-6(4): 473-483. doi: 10.1109/TAES.1970.310128
    [3] 周宏仁. 机动目标“当前” 统计模型与自适应跟踪算法[J]. 航空学报, 1983, 4(1): 73-86. doi: 10.3321/j.issn:1000-6893.1983.01.013

    ZHOU H R. A “current” statistical model and adaptive tracking algorithm for maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica, 1983, 4(1): 73-86(in Chinese). doi: 10.3321/j.issn:1000-6893.1983.01.013
    [4] MEHROTRA K, MAHAPATRA P R. A Jerk model for tracking highly maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4): 1094-1105. doi: 10.1109/7.624345
    [5] 王磊, 程向红, 李双喜, 等. 自适应交互式多模型AUV组合导航算法[J]. 中国惯性技术学报, 2016, 24(4): 511-516.

    WANG L, CHENG X H, LI S X, et al. Adaptive interacting multiple model filter for AUV integrated navigation[J]. Journal of Chinese Inertial Technology, 2016, 24(4): 511-516(in Chinese).
    [6] MAGILL D. Optimal adaptive estimation of sampled stochastic processes[J]. IEEE Transactions on Automatic Control, 1965, 10(4): 434-439. doi: 10.1109/TAC.1965.1098191
    [7] BLOM H A P. An efficient filter for abruptly changing systems[C]// Proceedings of the 23rd IEEE Conference on Decision and Control. Piscataway: IEEE Press, 1984: 656-658.
    [8] LI X R, BAR-SHALOM Y. Design of an interacting multiple model algorithm for air traffic control tracking[J]. IEEE Transactions on Control Systems Technology, 1993, 1(3): 186-194. doi: 10.1109/87.251886
    [9] 黄景帅, 李永远, 汤国建, 等. 高超声速滑翔目标自适应跟踪方法[J]. 航空学报, 2020, 41(9): 323786. doi: 10.7527/S1000-6893.2020.23786

    HUANG J S, LI Y Y, TANG G J, et al. Adaptive tracking method for hypersonic glide target[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 323786(in Chinese). doi: 10.7527/S1000-6893.2020.23786
    [10] 戴洪德, 方君, 唐亮, 等. 高超声速机动目标的强跟踪UKF自适应交互多模型算法[J]. 中国惯性技术学报, 2018, 26(3): 338-345.

    DAI H D, FANG J, TANG L, et al. Strong tracking UKF adaptive interacting multiple-model algorithm based on maneuvering hypersonic-target tracking[J]. Journal of Chinese Inertial Technology, 2018, 26(3): 338-345(in Chinese).
    [11] 戴定成, 姚敏立, 蔡宗平, 等. 改进的马尔可夫参数自适应IMM算法[J]. 电子学报, 2017, 45(5): 1198-1205. doi: 10.3969/j.issn.0372-2112.2017.05.024

    DAI D C, YAO M L, CAI Z P, et al. Improved adaptive Markov IMM algorithm[J]. Acta Electronica Sinica, 2017, 45(5): 1198-1205(in Chinese). doi: 10.3969/j.issn.0372-2112.2017.05.024
    [12] 肖楚晗, 李炯, 雷虎民, 等. 基于AVSIMM算法的高超声速再入滑翔目标跟踪[J]. 北京航空航天大学学报, 2019, 45(2): 413-421.

    XIAO C H, LI J, LEI H M, et al. Hypersonic reentry gliding target tracking based on AVSIMM algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 413-421(in Chinese).
    [13] 王姚宇, 陈仁文, 张祥. 改进的基于奇异值分解的抗差容积卡尔曼滤波算法在全球定位导航中的应用[J]. 科学技术与工程, 2021, 21(6): 2356-2362. doi: 10.3969/j.issn.1671-1815.2021.06.032

    WANG Y Y, CHEN R W, ZHANG X. Application of improved robust singular value decomposition-cubature Kalman filter algorithm in global positioning system navigation[J]. Science Technology and Engineering, 2021, 21(6): 2356-2362(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.06.032
    [14] 贾晓娟. 高超声速飞行器再入轨迹估计与跟踪[D]. 西安: 西北工业大学, 2015: 18-22.

    JIA X J. Reentry trajectory estimating and tracking for hypersonic vehicle[D]. Xi’an: Northwestern Polytechnical University, 2015: 18-22(in Chinese) .
    [15] 缪天宇. 助推滑翔式高超声速飞行器雷达探测与跟踪预报算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 11-13.

    MIAO T Y. Research on radar detection, tracking and prediction algorithm for the boost-glide hypersonic vehicle[D]. Harbin: Harbin Institute of Technology, 2017: 11-13(in Chinese) .
    [16] ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269. doi: 10.1109/TAC.2009.2019800
    [17] 秦雷, 李君龙, 周荻. 临近空间非弹道式目标HTV-2跟踪滤波与预报问题[J]. 航天控制, 2015, 33(2): 56-61. doi: 10.3969/j.issn.1006-3242.2015.02.010

    QIN L, LI J L, ZHOU D. The problems of tracking filter and prediction for non-ballistic target HTV-2 in the near space[J]. Aerospace Control, 2015, 33(2): 56-61(in Chinese). doi: 10.3969/j.issn.1006-3242.2015.02.010
    [18] MENG Q H, HOU B W, LI D, et al. Performance analysis and comparison for high maneuver target track based on different Jerk models[J]. Journal of Control Science and Engineering, 2018, 2018: 6432485.
    [19] 李广华. 高超声速滑翔飞行器运动特性分析及弹道跟踪预报方法研究[D]. 长沙: 国防科学技术大学, 2016: 19-20.

    LI G H. Motion characteristics analysis and trajectory prediction for hypersonic glide vehicles[D]. Changsha: National University of Defense Technology, 2016: 19-20(in Chinese) .
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  93
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-09-28
  • 整期出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    常见问答