留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合CBAM注意力机制与可变形卷积的车道线检测

胡丹丹 张忠婷 牛国臣

胡丹丹,张忠婷,牛国臣. 融合CBAM注意力机制与可变形卷积的车道线检测[J]. 北京航空航天大学学报,2024,50(7):2150-2160 doi: 10.13700/j.bh.1001-5965.2022.0601
引用本文: 胡丹丹,张忠婷,牛国臣. 融合CBAM注意力机制与可变形卷积的车道线检测[J]. 北京航空航天大学学报,2024,50(7):2150-2160 doi: 10.13700/j.bh.1001-5965.2022.0601
HU D D,ZHANG Z T,NIU G C. Lane line detection incorporating CBAM mechanism and deformable convolutional network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2150-2160 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0601
Citation: HU D D,ZHANG Z T,NIU G C. Lane line detection incorporating CBAM mechanism and deformable convolutional network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2150-2160 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0601

融合CBAM注意力机制与可变形卷积的车道线检测

doi: 10.13700/j.bh.1001-5965.2022.0601
基金项目: 天津市科技计划(17ZXHLGX00120);中央高校基本科研业务费专项资金(3122022PY17,3122017003)
详细信息
    通讯作者:

    E-mail:niu_guochen@139.com

  • 中图分类号: U471.11;TP391.4

Lane line detection incorporating CBAM mechanism and deformable convolutional network

Funds: Tianjin Science and Technology Plan (17ZXHLGX00120); The Fundamental Research Funds for the Central Universities (3122022PY17,3122017003)
More Information
  • 摘要:

    为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响应;引入可变形卷积替换常规卷积,用带偏移的采样学习车道线的几何形变,提高卷积核的建模能力;基于行锚分类思想,对行方向上的位置进行选择和分类分析,预测车道线的位置信息,提高车道线检测模型的实时性。在车道线公开数据集上对所提CADCN方法进行训练及验证,在满足实时性的情况下,CADCN方法在TuSimple数据集上准确率达到96.63%,在CULane数据集上综合评估指标F1平均值达到74.4%,验证了所提方法的有效性。

     

  • 图 1  网络框架

    Figure 1.  Network framework

    图 2  残差结构改进

    Figure 2.  Improvement of residual structure

    图 3  CBAM结构

    Figure 3.  CBAM structure

    图 4  可变形卷积过程

    Figure 4.  Process of deformable convolutional network

    图 5  TuSimple数据集示例

    Figure 5.  Example of TuSimple dataset

    图 6  CULane数据集示例

    Figure 6.  Example of CULane dataset

    图 7  LaneNet与CADCN检测结果对比

    Figure 7.  Comparison of LaneNet and CADCN detection results

    图 8  PINet与CADCN检测结果对比

    Figure 8.  Comparison of PINet and CADCN detection results

    图 9  无人驾驶汽车平台架构

    Figure 9.  Driverless vehicle platform architecture

    图 10  实际道路车道线检测

    Figure 10.  Lane line detection on actual road

    表  1  车道线数据集的详细信息

    Table  1.   Details of lane line dataset

    数据集 总帧数 训练集 验证集 测试集 分辨率/(像素×像素) 标注方式 多天气 多时段 多线型 道路类型 车道数 场景种类
    TuSimple 6408 3268 358 2782 1280×720 点坐标 公路 ≤5 1
    CULane 133235 88880 9675 34680 1640×590 点坐标 公路、城市、农村 ≤4 9
    下载: 导出CSV

    表  2  CULane数据集场景分类及占比

    Table  2.   CULane dataset scene classification and proportion

    场景 场景描述 占比/%
    正常 驾驶员视野良好,车道线标记清晰可见 27.74
    拥挤 道路上大量车辆缓行,车道线被车辆遮挡 23.39
    夜间 晚上能见度低,车道线模糊,各类灯光干扰 20.27
    无车道线 无车道线标记,通常道路狭窄且路边停车较多 11.73
    阴影 天桥或高架桥下光线较暗,树荫或建筑阴影 2.68
    箭头 车道线之间的直行、转弯、调头等标记 2.57
    亮光 各类强光造成路边反光,道路上车道线不清晰 1.40
    弯道 前方车道线弯曲 1.22
    十字路口 十字路口中斑马线标记干扰,路口中间无车道线 9.00
    下载: 导出CSV

    表  3  TuSimple数据集上不同模型检测结果比较

    Table  3.   Comparison of detection results of different models on TuSimple dataset

    方法 准确率/% 帧率/(帧·s−1)
    Segnet-Res34[11] 92.84 19.5
    PolyLaneNet 93.36 115
    FastDraw[18] 95.20 90
    PINet[19] 96.51 35
    SAD 96.02 42
    LaneNet 96.38 52.63
    EL-GAN[20] 96.39 9.8
    SCNN 96.53 7.5
    CADCN 96.63 50
    下载: 导出CSV

    表  4  CULane数据集上不同模型检测结果比较

    Table  4.   Comparison of detection results of different models on CULane dataset

    方法 F1/% FP (十字路口) 平均值/% 帧率/(帧·s−1
    正常 拥挤 夜间 无车道线 阴影 箭头 亮光 弯道
    LaneNet[10] 82.9 61.1 53.4 37.7 56.2 72.2 54.5 59.3 5928 61.8 44
    DeepLabV2 87.4 64.1 60.6 38.1 60.7 79 54.1 59.8 2505 66.7 77.31
    FastDraw[18] 85.9 63.6 57.8 40.6 59.9 79.4 57.0 65.2 7013 69.7 90.3
    SAD[9] 89.8 68.1 64.2 42.5 67.5 83.9 59.8 65.5 1995 70.5 39.53
    SCNN[8] 90.6 69.7 66.1 43.4 66.9 84.1 58.5 64.4 1990 71.6 7.5
    PINet[19] 89.6 71.9 67.0 49.3 67.0 84.2 65.2 66.2 1505 73.8 35
    CADCN 90.9 72.4 67.7 46.1 69.3 85.9 62.3 69.5 2016 74.4 92.4
     注:加粗字体为每行最优结果。
    下载: 导出CSV

    表  5  消融实验结果对比

    Table  5.   Comparison of ablation test results

    组别 可变形
    卷积
    通道注意
    力机制
    空间注意
    力机制
    CBAM注
    意力机制
    准确率/%
    1 95.87
    2 96.07
    3 96.23
    4 96.30
    5 96.63
    下载: 导出CSV
  • [1] WAYKOLE S, SHIWAKOTI N, STASINOPOULOS P. Review on lane detection and tracking algorithms of advanced driver assistance system[J]. Sustainability, 2021, 13(20): 11417. doi: 10.3390/su132011417
    [2] 杜恩宇, 张宁, 李艳荻. 基于Gabor滤波器的车道线快速检测方法[J]. 红外与激光工程, 2018, 47(8): 314-321.

    DU E Y, ZHANG N, LI Y D. Lane line quick detection method based on Gabor filter[J]. Infrared and Laser Engineering, 2018, 47(8): 314-321(in Chinese).
    [3] ANDRADE D C, BUENO F, FRANCO F R, et al. A novel strategy for road lane detection and tracking based on a vehicle’s forward monocular camera[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(4): 1497-1507. doi: 10.1109/TITS.2018.2856361
    [4] LUO S, ZHANG X Q, HU J, et al. Multiple lane detection via combining complementary structural constraints[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7597-7606. doi: 10.1109/TITS.2020.3005396
    [5] 蔡英凤, 张田田, 王海, 等. 基于实例分割和自适应透视变换算法的多车道线检测[J]. 东南大学学报(自然科学版), 2020, 50(4): 775-781. doi: 10.3969/j.issn.1001-0505.2020.04.023

    CAI Y F, ZHANG T T, WANG H, et al. Multi-lane detection based on instance segmentation and adaptive perspective transformation[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(4): 775-781(in Chinese). doi: 10.3969/j.issn.1001-0505.2020.04.023
    [6] KIM J, LEE M. Robust lane detection based on convolutional neural network and random sample consensus[C]//Proceeding of the International Conference on Neural Information Processing. Berlin: Springer, 2014: 454-461.
    [7] LI J,MEI X,PROKHOROV D,et al. Deep neural network for structural prediction and lane detection in traffic scene[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 690-703. doi: 10.1109/TNNLS.2016.2522428
    [8] PAN X G, SHI J P, LUO P, et al. Spatial as deep: Spatial CNN for traffic scene understanding[C]//Proceeding of the Thirty-Second AAAI Conference on Artificial Intelligence. Palo Alco: AAAI, 2018: 7276-7283.
    [9] HOU Y N, MA Z, LIU C X, et al. Learning lightweight lane detection CNNs by self attention distillation[C]//Proceeding of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 1013-1021.
    [10] NEVEN D, DE BRABANDERE B, GEORGOULIS S, et al. Towards end-to-end lane detection: An instance segmentation approach[C]//Proceeding of the IEEE Intelligent Vehicles Symposium (IV). Piscataway: IEEE Press, 2018: 286-291.
    [11] TABELINI L, BERRIEL R, PAIXÃO T M, et al. PolyLaneNet: Lane estimation via deep polynomial regression[C]//Proceeding of the 25th International Conference on Pattern Recognition. Piscataway: IEEE Press, 2021: 6150-6156.
    [12] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//Proceeding of the European Conference on Computer Vision. Berlin: Springer, 2018: 3-19.
    [13] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]/Proceeding of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 764-773.
    [14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [15] ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: More deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 9300-9308.
    [16] QIN Z Q, WANG H Y, LI X. Ultra fast structure-aware deep lane detection[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2020: 276-291.
    [17] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. doi: 10.1109/TPAMI.2017.2699184
    [18] PHILION J. FastDraw: Addressing the long tail of lane detection by adapting a sequential prediction network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 11574-11583.
    [19] KO Y, LEE Y, AZAM S, et al. Key points estimation and point instance segmentation approach for lane detection[C]//Proceedings of the IEEE Transactions on Intelligent Transportation Systems. Piscataway: IEEE Press, 2022: 8949-8958.
    [20] GHAFOORIAN M, NUGTEREN C, BAKA N, et al. EL-GAN: Embedding loss driven generative adversarial networks for lane detection[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2019: 256-272.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  96
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-09
  • 录用日期:  2022-11-19
  • 网络出版日期:  2022-12-15
  • 整期出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    常见问答