留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于元学习的小样本遥感图像目标检测

李红光 王玉峰 杨丽春

李红光,王玉峰,杨丽春. 基于元学习的小样本遥感图像目标检测[J]. 北京航空航天大学学报,2024,50(8):2503-2513 doi: 10.13700/j.bh.1001-5965.2022.0637
引用本文: 李红光,王玉峰,杨丽春. 基于元学习的小样本遥感图像目标检测[J]. 北京航空航天大学学报,2024,50(8):2503-2513 doi: 10.13700/j.bh.1001-5965.2022.0637
LI H G,WANG Y F,YANG L C. Meta-learning-based few-shot object detection for remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2503-2513 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0637
Citation: LI H G,WANG Y F,YANG L C. Meta-learning-based few-shot object detection for remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2503-2513 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0637

基于元学习的小样本遥感图像目标检测

doi: 10.13700/j.bh.1001-5965.2022.0637
基金项目: 国家重点研发计划(2020YFB0505602);国家自然科学基金(62076019,U20B2042)
详细信息
    通讯作者:

    E-mail:wyfeng@buaa.edu.cn

  • 中图分类号: TN911.73

Meta-learning-based few-shot object detection for remote sensing images

Funds: National Key Research and Development Program of China (2020YFB0505602); National Natural Science Foundation of China (62076019,U20B2042)
More Information
  • 摘要:

    面向小样本条件下的遥感图像目标检测任务,提出一种基于元学习的小样本遥感图像目标检测算法。针对遥感图像中目标尺度变化大、小样本条件下目标与背景易混淆的问题,在特征提取部分将单尺度重加权拓展为多尺度重加权模块,充分引入支持样本的先验知识以适应不同目标的尺度变化;为解决遥感图像目标类间相似性和类内差异性的问题,利用目标对于场景的依赖性设计了场景修正模块,对检出目标类别进行修正,并引入边际损失对特征空间内不同目标的特征分布进行约束。实验结果表明:所提算法在10样本任务设定上获得了较高的检测性能,在NWPU VHR-10和DIOR数据集新类别上的平均精度(mAP)分别达到了64.18%和37.27%。

     

  • 图 1  本文算法框架

    Figure 1.  Overall framework of the proposed algorithm

    图 2  元任务划分

    Figure 2.  Division of meta-task

    图 3  基于CSPNet的残差块

    Figure 3.  Residual block based on CSPNet

    图 4  空间金字塔池化层

    Figure 4.  Spatial pyramid pooling layer

    图 5  FPN和PAN结构

    Figure 5.  Structure of FPN and PAN

    图 6  通道注意力模块

    Figure 6.  Channel attention module

    图 7  空间注意力模块

    Figure 7.  Spatial attention module

    图 8  NWPU VHR-10[24]数据集样本示例

    Figure 8.  Example images from the NWPU VHR-10[24] dataset

    图 9  DIOR[25]数据集示例

    Figure 9.  Example images from the DIOR[25] dataset

    图 10  各尺度检测头部负责不同尺度目标的检出

    Figure 10.  Detection head at each scale for targets

    图 11  由于类内多样性和类间相似性造成的误检现象

    Figure 11.  False detections due to inter-class similarities and intra-class differences

    图 12  t-SNE可视化

    Figure 12.  t-SNE visualization

    图 13  可视化对比实验

    Figure 13.  Comparative visual results

    表  1  重加权向量生成网络结构

    Table  1.   Structure of reweighted vector generation network

    网络层输出维度是否重加权标志
    Input4×512×512
    Conv1 + Maxpooling32×256×256
    Conv2 + Maxpooling64×128×128
    Conv3 + Maxpooling128×64×64
    Conv4 + Maxpooling256×32×32
    Conv5 + CAM256×1×1通道
    Route from Conv4256×32×32
    Conv6 + SAM256×64×64空间
    Route with Conv4256×32×32
    Conv7 + Maxpooling512×16×16
    Conv8 + CAM512×1×1通道
    Route from Conv7512×16×16
    Conv9 + SAM512×32×32空间
    Route with Conv7512×16×16
    Conv10 + Maxpooling1024×8×8
    Conv11 + CAM1024×1×1通道
    Route from Conv101024×8×8
    Conv9 + SAM1024×16×16空间
    下载: 导出CSV

    表  2  多尺度重加权的有效性验证

    Table  2.   Effectiveness of the multiscale reweighting

    样本/个 单尺度通道
    mAP/%
    多尺度通道
    mAP/%
    多尺度空间+通道
    mAP/%
    3 13.17 26.36 29.52
    5 26.22 49.03 51.44
    10 37.10 61.74 62.85
    下载: 导出CSV

    表  3  边际损失和场景修正的有效性验证

    Table  3.   Effectiveness of marginal loss and scene correction

    样本/个 无约束
    mAP/%
    边际损失
    mAP/%
    场景修正+
    边际损失mAP/%
    1 10.17 9.87 10.32
    3 29.52 30.37 33.42
    5 51.44 52.03 54.58
    10 62.85 62.98 64.18
    下载: 导出CSV

    表  4  本文算法与其他算法的性能对比

    Table  4.   Comparison results with other algorithms %

    数据集 类别 YOLOv4[14]算法 mAP Meta-YOLO[9]算法 mAP 本文算法mAP
    5样本 10样本 3样本 5样本 10样本 3样本 5样本 10样本
    NWPU VHR-10[24] airplane 14.22 13.27 20.17 20.52 17.87 44.53 51.11
    baseball-diamond 26.05 14.73 43.64 74.38 55.69 83.45 90.71
    tennis-court 4.45 11.52 14.85 16.42 26.71 35.76 50.73
    mean 14.91 13.17 26.22 37.10 33.42 54.58 64.18
    DIOR[25] airplane 2.55 7.56 9.04 15.04 11.93 15.93 19.16
    baseballfield 32.25 27.35 33.37 45.63 30.57 39.06 51.29
    Tennis-court 29.61 40.48 47.23 54.44 57.54 63.41 65.13
    trainstation 1.79 8.62 9.27 7.98 11.35 13.52 19.25
    windmill 4.84 9.05 13.35 18.21 20.83 27.56 31.53
    mean 14.21 18.61 22.45 28.26 26.64 32.09 37.27
    下载: 导出CSV
  • [1] 聂光涛, 黄华. 光学遥感图像目标检测算法综述[J]. 自动化学报, 2021, 47(8): 1749-1768.

    NIE G T, HUANG H. A survey of object detection in optical remote sensing images[J]. Acta Automatica Sinica, 2021, 47(8): 1749-1768(in Chinese).
    [2] ZHANG R Q, SHAO Z F, HUANG X, et al. Adaptive dense pyramid network for object detection in UAV imagery[J]. Neurocomputing, 2022, 489: 377-389.
    [3] 张振伟, 郝建国, 黄健, 等. 小样本图像目标检测研究综述[J]. 计算机工程与应用, 2022, 58(5): 1-11.

    ZHANG Z W, HAO J G, HUANG J, et al. Review of few-shot object detection[J]. Computer Engineering and Applications, 2022, 58(5): 1-11(in Chinese).
    [4] 赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4): 629-654.

    ZHAO Y Q, RAO Y, DONG S P, et al. Survey on deep learning object detection[J]. Journal of Image and Graphics, 2020, 25(4): 629-654(in Chinese).
    [5] 谢富, 朱定局. 深度学习目标检测方法综述[J]. 计算机系统应用, 2022, 31(2): 1-12.

    XIE F, ZHU D J. Survey on deep learning object detection[J]. Computer Systems and Applications, 2022, 31(2): 1-12 (in Chinese).
    [6] WU J X, LIU S T, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2020: 456-472.
    [7] CHEN H, WANG Y L, WANG G Y, et al. LSTD: A low-shot transfer detector for object detection[J]. AAAI Conference on Artificial Intelligence, 2018, 32(1): 2836-2843.
    [8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [9] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]//Proceedings of the Advances in Neural Information Processing Systems. Piscataway: IEEE Press, 2015: 28.
    [10] KARLINSKY L, SHTOK J, HARARY S, et al. RepMet: Representative-based metric learning for classification and few-shot object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 5192-5201.
    [11] KANG B Y, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 8419-8428.
    [12] YAN X P, CHEN Z L, XU A N, et al. Meta R-CNN: Towards general solver for instance-level low-shot learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 9576-9585.
    [13] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525.
    [14] XIAO Z X, QI J H, XUE W, et al. Few-shot object detection with self-adaptive attention network for remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4854-4865. doi: 10.1109/JSTARS.2021.3078177
    [15] LE JEUNE P, LEBBAH M, MOKRAOUI A, et al. Experience feedback using representation learning for few-shot object detection on aerial images[C]//Proceedings of the 20th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE Press, 2021: 662-667.
    [16] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2021-11-01]. http://arxiv.org/abs/2004.10934.
    [17] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [18] ZHAO Q J, SHENG T, WANG Y T, et al. M2Det: A single-shot object detector based on multi-level feature pyramid network[J]. National Conference on Artificial Intelligence, 2019, 33(1): 9259-9266. doi: 10.1609/aaai.v33i01.33019259
    [19] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
    [20] LI B H, YANG B Y, LIU C, et al. Beyond max-margin: Class margin equilibrium for few-shot object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 7359-7368.
    [21] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J]. AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. doi: 10.1609/aaai.v34i07.6999
    [22] LI X Y, LI H G, YU R N, et al. Few-shot scene classification with attention mechanism in remote sensing[C]//Proceedings of the International Conference on Computer Engineering and Innovative Application of VR. Bristol: IOP Publishing, 2021, 1961: 012015.
    [23] RUBNER Y, TOMASI C, GUIBAS L J. The earth mover’s distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2): 99-121. doi: 10.1023/A:1026543900054
    [24] LONG Y, GONG Y P, XIAO Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498. doi: 10.1109/TGRS.2016.2645610
    [25] LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. doi: 10.1016/j.isprsjprs.2019.11.023
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  131
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 录用日期:  2022-10-04
  • 网络出版日期:  2022-11-07
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答