留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强化学习的航天器姿态预设性能容错控制

金磊 杨绍龙

金磊,杨绍龙. 基于强化学习的航天器姿态预设性能容错控制[J]. 北京航空航天大学学报,2024,50(8):2404-2412 doi: 10.13700/j.bh.1001-5965.2022.0666
引用本文: 金磊,杨绍龙. 基于强化学习的航天器姿态预设性能容错控制[J]. 北京航空航天大学学报,2024,50(8):2404-2412 doi: 10.13700/j.bh.1001-5965.2022.0666
JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0666
Citation: JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0666

基于强化学习的航天器姿态预设性能容错控制

doi: 10.13700/j.bh.1001-5965.2022.0666
基金项目: 中央高校基本科研业务费专项资金(YWF-22-L-801)
详细信息
    通讯作者:

    E-mail:jinleibuaa@163.com

  • 中图分类号: V448.22;TP302.8

Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning

Funds: The Fundamental Research Funds for the Central Universities (YWF-22-L-801)
More Information
  • 摘要:

    针对惯量不确定性和执行机构故障的航天器姿态控制问题,提出了一种基于强化学习的预设性能容错控制方法。采用预设性能方法设计航天器的姿态控制器,以保证控制过程的暂态响应。为在线补偿惯量不确定,在预设性能控制器的基础上引入强化学习算法,使用评判网络近似代价函数,用于评估系统性能,同时使用动作网络产生前馈补偿控制,用于处理惯量不确定;设计自适应补偿控制,补偿执行机构故障和外扰动对航天器姿态的影响。基于Lyapunov稳定性理论证明整个闭环系统的稳定性。仿真结果表明:所提容错控制方法能够实现航天器执行机构故障情况下的稳定控制。

     

  • 图 1  基于强化学习的航天器姿态预设性能容错控制系统结构示意图

    Figure 1.  Structure of fault-tolerant control system of spacecraft attitude with prescribed performance based on reinforcement learning

    图 2  姿态四元数

    Figure 2.  Attitude quaternion

    图 3  姿态角速度

    Figure 3.  Attitude angular velocity

    图 4  滑模变量

    Figure 4.  Sliding mode variable

    图 5  期望控制力矩

    Figure 5.  Expected control moment

    图 6  惯量不确定性估计误差

    Figure 6.  Estimation error of inertia uncertainty

    图 7  外扰动估计误差

    Figure 7.  Estimation error of external disturbance

    图 8  评判网络权重

    Figure 8.  Weight of critic network

    图 9  动作网络权重

    Figure 9.  Weight of actor network

    图 10  姿态四元数仿真结果

    Figure 10.  Results of attitude quaternion

    图 11  姿态角速度仿真结果

    Figure 11.  Results of attitude angular velocity

    图 12  滑模变量仿真结果

    Figure 12.  Results of sliding mode variable

    图 13  期望控制力矩仿真结果

    Figure 13.  Results of expected control moment

  • [1] 王亚坤, 杨凯飞, 张婕, 等. 卫星在轨故障案例与人工智能故障诊断[J]. 中国空间科学技术, 2022, 42(1): 16-29.

    WANG Y K, YANG K F, ZHANG J, et al. Case study of in-orbit satellite failures and artificial intelligence based failure detection[J]. Chinese Space Science and Technology, 2022, 42(1): 16-29(in Chinese).
    [2] 姜斌, 张柯, 杨浩, 等. 卫星姿态控制系统容错控制综述[J]. 航空学报, 2021, 42(11): 524662. doi: 10.7527/S1000-6893.2020.24662

    JIANG B, ZHANG K, YANG H, et al. Fault-tolerant control of satellite attitude control systems: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524662(in Chinese). doi: 10.7527/S1000-6893.2020.24662
    [3] 沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述[J]. 宇航学报, 2020, 41(6): 647-656.

    SHEN Y, LI L L, WANG Z H. A review of fault diagnosis and fault-tolerant control techniques for spacecraft[J]. Journal of Astronautics, 2020, 41(6): 647-656(in Chinese).
    [4] 陈雪芹, 孙瑞, 宋道喆, 等. 航天器姿态控制系统单机故障分析[C]//第三届中国指挥控制大会. 北京: 国防工业出版社, 2015: 275-280.

    CHEN X Q, SUN R, SONG D Z, et al. Failure analysis of components in spacecraft attitude control system[C]//Proceedings of the 3rd China Conference on Command and Control. Beijing: National Defense Industry Press, 2015: 275-280(in Chinese).
    [5] 林来兴. 最近十年航天器制导、导航与控制(GNC)系统故障分析研究[J]. 控制工程, 2004(1): 1-8. doi: 10.3969/j.issn.1671-7848.2004.01.001

    LIN L X. Fault analysis of spacecraft guidance, navigation and control (GNC) systems in the last decade[J]. Control Engineering of China, 2004(1): 1-8(in Chinese). doi: 10.3969/j.issn.1671-7848.2004.01.001
    [6] EDWARDS C, LOMBAERTS T, SMAILI H. Fault tolerant flight control: A benchmark challenge[M]. Berlin: Springer, 2010.
    [7] JIN J, KO S, RYOO C K. Fault tolerant control for satellites with four reaction wheels[J]. Control Engineering Practice, 2008, 16(10): 1250-1258. doi: 10.1016/j.conengprac.2008.02.001
    [8] ZHOU J, LI X, LIU R, et al. Active fault-tolerant satellite attitude control based on fault effect classification[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231: 1917-1934. doi: 10.1177/0954410016662487
    [9] SHEN Q, YUE C F, GOHC H, et al. Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3763-3772. doi: 10.1109/TIE.2018.2854602
    [10] 闫鑫. 基于滑模的航天器执行机构故障诊断与容错控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    YAN X. Research on sliding mode based spacecraft actuator fault diagnosis and fault-tolerant control[D]. Harbin: Harbin Engineering University, 2012(in Chinese).
    [11] 苏伟伟. 深空探测器高精度姿态容错控制研究[D]. 南京: 南京航空航天大学, 2018.

    SU W W. Research on high precision fault-tolerant attitude control for deep space probe[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [12] WANG Z, LI Q, LI S R. Adaptive integral-type terminal sliding mode fault tolerant control for spacecraft attitude tracking[J]. IEEE Access, 2019, 7: 35195-35207. doi: 10.1109/ACCESS.2019.2901966
    [13] HUANG X W, DUAN G R. Fault-tolerant attitude tracking control of combined spacecraft with reaction wheels under prescribed performance[J]. ISA Transactions, 2020, 98: 161-172. doi: 10.1016/j.isatra.2019.08.041
    [14] RICHARD S S, ANDREW G B. Reinforcement learning: An introduction[M]. 2nd ed. Cambridge: MIT Press, 2017: 1-18.
    [15] 李茹杨, 彭慧民, 李仁刚, 等. 强化学习算法与应用综述[J]. 计算机系统应用, 2020, 29(12): 13-25.

    LI R Y, PENG H M, LI R G, et al. Overview on algorithms and applications for reinforcement learning[J]. Computer Systems & Applications, 2020, 29(12): 13-25(in Chinese).
    [16] 孔松涛, 刘池池, 史勇, 等. 深度强化学习在智能制造中的应用展望综述[J]. 计算机工程与应用, 2021, 57(2): 49-59.

    KONG S T, LIU C C, SHI Y, et al. Review of application prospect of deep reinforcement learning in intelligent manufacturing[J]. Computer Engineering and Applications, 2021, 57(2): 49-59(in Chinese).
    [17] 李铭浩, 张华, 刘满禄, 等. 基于深度强化学习的机械臂容错控制方法[J]. 传感器与微系统, 2020, 39(1): 53-55.

    LI M H, ZHANG H, LIU M L, et al. Fault tolerant control method of manipulator based on deep reinforcement learning[J]. Transducer and Microsystem Technologies, 2020, 39(1): 53-55(in Chinese).
    [18] AHMED I, QUIÑONES-GRUEIRO M, BISWAS G. Fault-tolerant control of degrading systems with on-policy reinforcement learning[J]. IFAC-Papers OnLine, 2020, 53(2): 13733-13738. doi: 10.1016/j.ifacol.2020.12.878
    [19] ZHAO W B, LIU H, LEWIS F. Fault-tolerant control for the formation of multiple unknown nonlinear quadrotors via reinforcement learning[J]. IFAC-Papers OnLine, 2020, 53(2): 2465-2470. doi: 10.1016/j.ifacol.2020.12.194
    [20] ZHANG H G, ZHANG K, CAI Y L, et al. Adaptive fuzzy fault-tolerant tracking control for partially unknown systems with actuator faults via integral reinforcement learning method[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(10): 1986-1998. doi: 10.1109/TFUZZ.2019.2893211
  • 加载中
图(13)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  132
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-28
  • 录用日期:  2022-09-16
  • 网络出版日期:  2022-10-14
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答