留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾转旋翼飞行器机翼滑流区面积可视化计算方法

宋伟 王琦 何国毅

宋伟,王琦,何国毅. 倾转旋翼飞行器机翼滑流区面积可视化计算方法[J]. 北京航空航天大学学报,2024,50(8):2492-2502 doi: 10.13700/j.bh.1001-5965.2022.0676
引用本文: 宋伟,王琦,何国毅. 倾转旋翼飞行器机翼滑流区面积可视化计算方法[J]. 北京航空航天大学学报,2024,50(8):2492-2502 doi: 10.13700/j.bh.1001-5965.2022.0676
SONG W,WANG Q,HE G Y. Visual calculation method of wing slipstream zone area on tiltrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2492-2502 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0676
Citation: SONG W,WANG Q,HE G Y. Visual calculation method of wing slipstream zone area on tiltrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2492-2502 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0676

倾转旋翼飞行器机翼滑流区面积可视化计算方法

doi: 10.13700/j.bh.1001-5965.2022.0676
详细信息
    通讯作者:

    E-mail:wangqi439@nchu.edu.cn

  • 中图分类号: V221.52

Visual calculation method of wing slipstream zone area on tiltrotor aircraft

More Information
  • 摘要:

    机翼滑流区面积计算是进行倾转旋翼飞行器旋翼与机翼气动干扰分析的关键,针对倾转旋翼飞行器机翼滑流区面积计算,基于CATIA二次开发和参数化设计技术,结合气动计算和三维几何图形运算,提出一种可视化计算方法,其能够在考虑机翼和旋翼参数影响的情况下,准确计算机翼滑流区面积,并且能够直观地确定机翼滑流区区域及机翼滑流区随各项参数的动态变化过程。通过基于XV-15倾转旋翼飞行器参数进行实例计算和分析,结果表明:机翼安装角、后掠角、上反角等机翼参数在纵向和侧向分析时对机翼滑流区面积影响较小;旋翼后倒角、侧倒角及旋翼主轴侧倾角等旋翼参数对机翼滑流区面积影响较大;在不考虑旋翼后倒角和侧倒角的情况下,采用所提方法对XV-15倾转旋翼飞行器机翼滑流区面积进行计算,计算精度最大可提升18.976%。

     

  • 图 1  本文方法的计算流程

    Figure 1.  Visual calculation process of the proposed method

    图 2  建模体轴系

    Figure 2.  Body axis system for modeling

    图 3  计算体轴系、风轴系及桨轴系

    Figure 3.  Body axis system for calculation, wind axis system, and mast axis system

    图 4  机翼参考面参数化几何模型

    Figure 4.  Parametric geometric model of wing reference surface

    图 5  旋翼主轴参数化几何模型

    Figure 5.  Parametric geometric model of rotor mast

    图 6  机翼参考面建模流程

    Figure 6.  Modeling process of wing reference surface

    图 7  旋翼主轴建模流程

    Figure 7.  Modeling process of rotor mast

    图 8  旋翼尾流边界轮廓几何模型

    Figure 8.  Geometric model of rotor wake boundary contour

    图 9  旋翼尾流边界轮廓建模流程

    Figure 9.  Modeling process of rotor wake boundary contour

    图 10  机翼滑流区面积计算流程

    Figure 10.  Calculation process of wing slipstream zone area

    图 11  实际机翼与简化矩形翼

    Figure 11.  Actual wing and simplified rectangular wing

    图 12  纵向分析时机翼安装角对机翼滑流区面积的影响

    Figure 12.  Influence of incidence angle on wing slipstream zone area in longitudinal analysis

    图 13  纵向分析时机翼上反角对机翼滑流区面积的影响

    Figure 13.  Influence of dihedral angle on wing slipstream zone area in longitudinal analysis

    图 14  纵向分析时机翼后掠角对机翼滑流区面积的影响

    Figure 14.  Influence of sweep angle on wing slipstream zone area in longitudinal analysis

    图 15  纵向分析时旋翼后倒角对机翼滑流区面积的影响

    Figure 15.  Influence of back angle of rotor on wing slipstream zone area in longitudinal analysis

    图 16  纵向分析时旋翼侧倾角对机翼滑流区面积的影响

    Figure 16.  Influence of angle of outboard tilt of mast axis on wing slipstream zone area in longitudinal analysis

    图 17  纵向分析时实际机翼与简化矩形翼的机翼滑流区面积

    Figure 17.  Wing slipstream zone area of actual wing and simplified rectangular wing in longitudinal analysis

    图 18  侧向分析时机翼安装角对机翼滑流区面积的影响

    Figure 18.  Influence of incidence angle on wing slipstream zone area in lateral analysis

    图 19  侧向分析时机翼上反角对机翼滑流区面积的影响

    Figure 19.  Influence of dihedral angle on wing slipstream zone area in lateral analysis

    图 20  侧向分析时机翼后掠角对机翼滑流区面积的影响

    Figure 20.  Influence of sweep angle on wing slipstream zone area in lateral analysis

    图 21  侧向分析时旋翼侧倒角对机翼滑流区面积的影响

    Figure 21.  Influence of side angle of rotor on wing slipstream zone area in lateral analysis

    图 22  侧向分析时旋翼侧倾角对机翼滑流区面积的影响

    Figure 22.  Influence of angle of outboard tilt of mast axis on wing slipstream zone area in lateral analysis

    图 23  侧向分析时实际机翼与简化矩形翼的机翼滑流区面积

    Figure 23.  Wing slipstream zone area of actual wing and simplified rectangular wing in lateral analysis

    表  1  XV-15倾转旋翼飞行器相关参数

    Table  1.   Relevant parameters of XV-15 tiltrotor aircraft

    ${L_{\text{W}}}$/m $\left( {{S_{{\text{LWP}}}},{B_{{\text{LWP}}}},{W_{{\text{LWP}}}}} \right)$/m ${i_{\text{W}}}$/(°) ${i_{\text{U}}}$/(°) ${i_{\text{S}}}$/(°) ${c_{\text{W}}}$/m $\left( {{S_{{\text{LSP}}}},{B_{{\text{LSP}}}},{W_{{\text{LSP}}}}} \right)$/m ${\phi _{{\text{MK}}}}$/(°) ${l_{\text{M}}}$/m $\varOmega $/(r·min−1) $R$/m
    9.81 (7.396,2.604,2.435) 0 2 −6.5 1.6 (7.620,4.902,2.540) 1 1.423 565 3.81
    下载: 导出CSV

    表  2  纵向分析参数设置

    Table  2.   Parameters setting for longitudinal analysis

    ${i_{\text{n}}}$/(°) ${\alpha _{\text{F}}}$/(°) ${\beta _{\text{F}}}$/(°)
    60 13.6 0
    下载: 导出CSV

    表  3  侧向分析参数设置

    Table  3.   Parameter setting for lateral analysis

    ${i_{\mathrm{n}}}$/(°) ${\alpha _{\mathrm{F}}}$/(°) ${\beta _{\mathrm{F}}}$/(°)
    90 0 90
    下载: 导出CSV
  • [1] 邵扬杰, 刘莉, 曹潇, 等. 倾转旋翼无人机发展现状及关键技术概述[J]. 战术导弹技术, 2022(1): 12-20.

    SHAO Y J, LIU L, CAO X, et al. Research status and key technologies of tilt-rotor UAVs[J]. Tactical Missile Technology, 2022(1): 12-20(in Chinese).
    [2] SHENG H L, ZHANG C, XIANG Y L. Mathematical modeling and stability analysis of tiltrotor aircraft[J]. Drones, 2022, 6(4): 92. doi: 10.3390/drones6040092
    [3] ZHAO G Q, ZHAO Q J, LI P, et al. Parametric analyses for effects of RPM and diameter on tiltrotor aerodynamic performances in hovering and cruise mode[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(3): 479-488. doi: 10.1007/s42405-020-00333-z
    [4] 吴伟伟, 马存旺, 张练, 等. 倾转旋翼机连续倾转过渡状态数值模拟[J]. 航空工程进展, 2021, 12(3): 55-64.

    WU W W, MA C W, ZHANG L, et al. Numerical simulation of continuous tilting transition of tiltrotor aircraft[J]. Advances in Aeronautical Science and Engineering, 2021, 12(3): 55-64(in Chinese).
    [5] 刘佳豪, 李高华, 王福新. 倾转过渡状态旋翼-机翼气动干扰特性计算分析[J]. 航空学报, 2022, 43(12): 126097.

    LIU J H, LI G H, WANG F X. Calculation analysis of rotor-wing aerodynamic interference characteristics in conversion mode[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126097(in Chinese).
    [6] 吴健健, 王琦, 李之瀚, 等. 倾转旋翼飞机过渡段定高飞行控制研究[J]. 计算机仿真, 2020, 37(4): 48-51. doi: 10.3969/j.issn.1006-9348.2020.04.010

    WU J J, WANG Q, LI Z H, et al. Study on flight control at constant height of a tilting wing aircraft in transition section[J]. Computer Simulation, 2020, 37(4): 48-51(in Chinese). doi: 10.3969/j.issn.1006-9348.2020.04.010
    [7] WU Z L, LI C, CAO Y H. Numerical simulation of rotor-wing transient interaction for a tiltrotor in the transition mode[J]. Mathematics, 2019, 7(2): 116. doi: 10.3390/math7020116
    [8] DROANDI G, ZANOTTI A, GIBERTINI G. Aerodynamic interaction between rotor and tilting wing in hovering flight condition[J]. Journal of the American Helicopter Society, 2015, 60(4): 1-20.
    [9] 陈皓, 董育伟. 定常吹气对倾转旋翼机向下载荷的影响[J]. 应用力学学报, 2021, 38(1): 93-98. doi: 10.11776/cjam.38.01.A052

    CHEN H, DONG Y W. Tiltrotor download reduction using steady blowing control[J]. Chinese Journal of Applied Mechanics, 2021, 38(1): 93-98 (in Chinese). doi: 10.11776/cjam.38.01.A052
    [10] KJELLGREN P, SIVASUBRAMANIAN J, CERCHIE D, et al. Download alleviation for the XV-15: Computations and experiments of flows around the wing[C]//Proceedings of the Biennial International Powered Lift Conference and Exhibit. Reston: AIAA, 2002: 6007.
    [11] CARLSON E, ZHAO Y Y, CHEN R. Optimal tiltrotor runway operations in one engine inoperative[C]//Proceedings of the Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 1999: 3961.
    [12] HARENDRA P B, JOGLEKAR M J, GAFFEY T M, et al. V/STOL tilt rotor study. Volume 5: A mathematical model for real time flight simulation of the Bell model 301 tilt rotor research aircraft: NASA-CR-114614 [R]. Texas: NASA, 1973: A27-A32.
    [13] 曹芸芸, 陈仁良. 倾转旋翼飞行器旋翼对机翼向下载荷计算模型[J]. 航空动力学报, 2011, 26(2): 468-474.

    CAO Y Y, CHEN R L. Mathematical model for calculating wing download of tiltrotor aircraft[J]. Journal of Aerospace Power, 2011, 26(2): 468-474(in Chinese).
    [14] 吕韵, 周进, 童明波. 常规布局飞机概念外形参数化建模研究[J]. 机械设计与制造工程, 2019, 48(11): 7-10. doi: 10.3969/j.issn.2095-509X.2019.11.002

    LYU Y, ZHOU J, TONG M B. Research on the parametric design of concept aircraft shape[J]. Machine Design and Manufacturing Engineering, 2019, 48(11): 7-10(in Chinese). doi: 10.3969/j.issn.2095-509X.2019.11.002
    [15] 冯毅, 唐伟, 任建勋, 等. 飞行器参数化几何建模方法研究[J]. 空气动力学学报, 2012, 30(4): 546-550. doi: 10.3969/j.issn.0258-1825.2012.04.020

    FENG Y, TANG W, REN J X, et al. Parametric geometry representation method for hypersonic vehicle configuration[J]. Acta Aerodynamica Sinica, 2012, 30(4): 546-550 (in Chinese). doi: 10.3969/j.issn.0258-1825.2012.04.020
    [16] 曹芸芸. 倾转旋翼飞行器飞行动力学数学建模方法研究[D]. 南京: 南京航空航天大学, 2012.

    CAO Y Y. Research on mathematical modeling method for tilt rotor aircraft flight dynamics[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
  • 加载中
图(23) / 表(3)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  125
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 录用日期:  2022-08-12
  • 网络出版日期:  2022-08-24
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答