Turbulence-radiation interaction in turbulent jet flame based on large-eddy simulation
-
摘要:
在大涡模拟中,研究了亚格子湍流辐射交互作用(SGS-TRI)对Sandia Flame D和Flame 4D(Scaled Sandia flame D)辐射源项的影响。模拟中,采用概率密度函数输运方程(TPDF)湍流燃烧模型模拟湍流燃烧过程,球谐函数(P1近似)法、灰气体加权和模型(WSGGM)模拟辐射换热。采用湍流涡团光学薄脉动近似(OTFA)处理滤波吸收项,分别采用考虑和忽略SGS-TRI的方法求解滤波发射项。结果显示,SGS-TRI仅在辐射源项本身数值较小的区域对时均辐射源项有相对较大的影响(最大为25%);考虑和忽略SGS-TRI计算得到的时均温度以及CO2浓度等径向分布基本重合(相对差别小于3%)。因此,亚格子湍流辐射交互作用对无碳烟湍流射流火焰(Flame D和Flame 4D)的影响较小。
-
关键词:
- 湍流辐射交互作用 /
- 亚格子 /
- 大涡模拟 /
- 概率密度函数输运方程模型 /
- 辐射传热
Abstract:In large eddy simulation (LES), the influence of subgrid-scale turbulence-radiation interaction (SGS-TRI) on the radiative source term for Sandia Flame D and the scaled Sandia flame D (Flame 4D) was studied. The transport probability density function (TPDF) method was used to simulate the turbulence combustion, and the spherical harmonics (P1 approximation) method and the weighted-sum-of-gray-gases model (WSGGM) were employed to simulate the radiation heat transfer. The optically thin fluctuation approximation (OTFA) of the turbulent vortex group was applied for processing the filtered absorption term, and different methods considering or omitting the SGS-TRI were used for solving the filtered emission term. The results show that the SGS-TRI has a relatively large effect on the time-averaged radiation source term (up to 25%) only in areas where the source term itself is small. The radial distributions of the time-averaged temperature and CO2 concentration calculated by considering and ignoring the SGS-TRI largely overlap (The relative difference is less than 3%). Therefore, the influence of SGS-TRI on the non-sooting turbulent jet flames (Flame D and Flame 4D) is small.
-
表 1 Flame D和Flame 4D边界条件
Table 1. Boundary conditions of Flame D and Flame 4D
边界 Flame D Flame 4D FUEL 温度T=293 K,
速度U=49.6 m/s
体积分数甲烷0.25,
空气0.75温度T=293 K,
速度U=12.4 m/s
体积分数甲烷0.25,
空气0.75PILOT 温度T= 1880 K,
速度U=11.4 m/s
已燃气温度T= 1880 K,
速度U=2.85 m/s
已燃气CO-FLOW 温度T=293 K,
速度U=0.9 m/s
空气温度T=293 K,
速度U=0.225 m/s
空气出口边界 压力出口边界 压力出口边界 其他边界 T=300 K,ε=1.0 T=300 K,ε=1.0 表 2 滤波发射项的不同近似方法
Table 2. Different approximation methods used to calculate filtering emission term
参考名称 发射项 method 1 ${\tilde \kappa _j}{\alpha _j}(\tilde T){I_{\mathrm{b}}}(\tilde T)$ method 2 ${\tilde \kappa _j}{\alpha _j}(\tilde T)\widetilde {{I_{\mathrm{b}}}}$ method 3 $\widetilde {{\kappa _j}{\alpha _j}{I_{\mathrm{b}}}}$ 表 3 非耦合情况下辐射计算结果总结
Table 3. Summary of radiation calculation results for non-coupled case
火焰 $ \left\langle{{\tilde{Q}}_{\mathrm{e}\mathrm{m}}}\right\rangle $/kW $ \left\langle{{\tilde{Q}}_{\mathrm{a}\mathrm{b}\mathrm{s}}}\right\rangle $/kW $ \left\langle{{\tilde{Q}}_{\mathrm{n}\mathrm{e}\mathrm{t}}}\right\rangle $/kW $ {f}_{\mathrm{r}\mathrm{a}\mathrm{d}} $/% D(method1) 1.094 1 0.164 8 0.929 4 6.12 D(method2) 1.096 3 0.165 0 0.931 4 6.14 D(method3) 1.116 9 0.165 8 0.951 1 6.23 4D(method1) 39.473 3 12.308 3 27.165 1 58.73 4D(method2) 39.533 6 12.323 7 27.209 9 58.82 4D(method3) 39.891 6 12.388 5 27.503 1 59.46 表 4 耦合情况下辐射计算结果总结
Table 4. Summary of radiation calculation results for coupled case
火焰 $ \left\langle{{\tilde{Q}}_{\mathrm{e}\mathrm{m}}}\right\rangle $/kW $ \left\langle{{\tilde{Q}}_{\mathrm{a}\mathrm{b}\mathrm{s}}}\right\rangle $/kW $ \left\langle{{\tilde{Q}}_{\mathrm{n}\mathrm{e}\mathrm{t}}}\right\rangle $/kW $ {f}_{\mathrm{r}\mathrm{a}\mathrm{d}} $/% D(method1) 1.1059 0.1691 0.9369 6.01 D(method3) 1.1036 0.1681 0.9355 6.09 4D(method1) 39.1258 14.5712 24.5546 46.40 4D(method3) 39.6041 14.6760 24.9281 46.73 -
[1] LEFEBVRE A H. Gas turbine combustion[M]. 2nd ed. Philadelphia: Taylor & Francis, 1999. [2] LI G N, MODEST M F. Importance of turbulence-radiation interactions in turbulent diffusion jet flames[J]. Journal of Heat Transfer, 2003, 125(5): 831-838. doi: 10.1115/1.1597621 [3] WANG A Q, MODEST M F, HAWORTH D C, et al. Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(2): 269-279. doi: 10.1016/j.jqsrt.2007.08.030 [4] 刘玉英, 吴辉霞, 薛然然, 等. TRI对湍流火焰模拟中辐射源项的影响[J]. 燃烧科学与技术, 2011, 17(2): 121-125.LIU Y Y, WU H X, XUE R R, et al. Influence of TRI on radiation source term during turbulent flame simulation[J]. Journal of Combustion Science and Technology, 2011, 17(2): 121-125 (in Chinese). [5] FRAGA G C, MIRANDA F C, FRANCA F H R, et al. Assessment of a model for emission subgrid-scale turbulence-radiation interaction applied to a scaled Sandia flame DD[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 248: 106986. doi: 10.1016/j.jqsrt.2020.106986 [6] MIRANDA F C, COELHO P J, STRÖHLE J, et al. Large-eddy simulation of a bluff-body stabilised nonpremixed flame with radiation heat transfer[J]. Combustion Theory and Modelling, 2020, 24(4): 632-649. [7] COELHO P J. Approximate solutions of the filtered radiative transfer equation in large eddy simulations of turbulent reactive flows[J]. Combustion and Flame, 2009, 156: 1099-1110. doi: 10.1016/j.combustflame.2008.10.006 [8] CONSALVI J L, NMIRA F, KONG W J. On the modeling of the filtered radiative transfer equation in large eddy simulations of lab-scale sooting turbulent diffusion flames[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 221: 51-60. doi: 10.1016/j.jqsrt.2018.09.020 [9] GUPTA A, HAWORTH D C, MODEST M F. Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1281-1288. doi: 10.1016/j.proci.2012.05.052 [10] MIRANDA F C, COELHO P J, DI MARE F, et al. Study of turbulence-radiation interactions in large-eddy simulation of scaled Sandia flame D[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 228: 47-56. doi: 10.1016/j.jqsrt.2019.02.010 [11] JONES W P, PRASAD V N. Large Eddy Simulation of the Sandia Flame Series (D–F) using the Eulerian stochastic field method[J]. Combustion and Flame, 2010, 157(9): 1621-1636. doi: 10.1016/j.combustflame.2010.05.010 [12] YIN C G. Refined weighted sum of gray gases model for air-fuel combustion and its impacts[J]. Energy & Fuels, 2013, 27(10): 6287-6294. [13] MENGÜÇ M P, VISKANTA R. Radiative transfer in three-dimensional rectangular enclosures containing inhomogeneous, anisotropically scattering media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1985, 33(6): 533-549. doi: 10.1016/0022-4073(85)90021-4 [14] 郝金波. 非均匀各向异性散射介质内辐射传递求解的有限体积法[D]. 哈尔滨: 哈尔滨工业大学, 2013.HAO J B. Finite volume method for solving radiative transfer in inhomogeneous anisotropic scattering media[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). [15] MASRI A R, DIBBLE R W, BARLOW R S. Turbulent nonpremixed flames stabilished on a piloted jet burner[C]//Proceedings of the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames. California: Sandia National Laboratories, 1996: 41-46. [16] ZHOU L X, QIAO L, ZHANG J. A unified second-order moment turbulence-chemistry model for simulating turbulent combustion and NOx formation[J]. Fuel, 2002, 81: 1703-1709. doi: 10.1016/S0016-2361(01)00173-9 [17] 徐晓. 湍流非预混火焰中热辐射影响的数值研究[D]. 合肥: 中国科学技术大学, 2006.XU X. Numerical investigation of thermal radiation effects of non-premixed flames[D]. Hefei: University of Science and Technology of China, 2006 (in Chinese). [18] DORIGON L J, DUCIAK G, BRITTES R, et al. WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures[J]. International Journal of Heat and Mass Transfer, 2013, 64: 863-873. doi: 10.1016/j.ijheatmasstransfer.2013.05.010