Efficient prediction method for Kelvin-Helmholtz instability growth on transcritical droplet surface in composite coordinate system
-
摘要:
针对混合动力专用内燃机实际运行的跨临界条件,传统方法对于主导可燃混合气形成质量的液滴表面Kelvin-Helmholtz不稳定性分析方法难以实现跨临界宽范围的有效预测。采用复合坐标系方法,建立跨临界强对流环境的等效液滴不稳定性高效预测模型,分别采用全局扩散动力学模型、热力学控制模型及局部液滴表面切向不稳定模型。在全局坐标系模型可以通过模态坐标变换求得解析解,局部坐标系引入势函数等,提高求解速度。而对于可实用性流体计算仿真模型,可通过无量纲物理参数描述不同跨临界条件下空气动力、惯性力、黏性力、表面张力、加速度等控制因素的变化规律,以及其对液滴表面切向和法向不稳定波增长的影响规律。结果表明:液滴表面的空气动力仍然支配着跨临界条件液滴表面切向不稳定波的发展;压力增大时,液相雷诺数控制的流动特性减小与欧尼索控制的液滴黏性力减弱基本抵消;环境温度增加时,雷诺数表征的流动特性对Kelvin-Helmholtz波增长的贡献越来越小,液滴的惯性力影响也越来越弱。
-
关键词:
- 复坐标系 /
- 跨临界 /
- 液滴 /
- 表面Kelvin-Helmholtz不稳定 /
- 高效预测
Abstract:Traditional methods for analyzing the Kelvin-Helmholtz instability on the surface of droplets that dominate the formation mass of combustible mixtures are difficult to achieve effective predictions over a wide range of critical conditions for the actual operation of hybrid internal combustion engines. In this paper, the composite coordinate system method was used to establish an efficient prediction model of equivalent droplet instability in a transcritical strong convection environment. The global diffusion dynamics model, thermodynamics control model, and tangential instability model of local droplet surface were used, respectively. The analytical solution could be obtained by the modal coordinate transformation in the global coordinate system model, and the potential function was introduced in the local coordinate system to improve the solution speed. To realize a practical fluid computational simulation model, the dimensionless physical parameters were used to describe the changes in aerodynamic force, inertial force, viscous force, surface tension, and other control factors under different transcritical conditions and analyze their influence on the growth of tangential and normal unstable waves on the droplet surface. The results show that the aerodynamic forces on the droplet surface still dominate the development of tangential unstable waves on the droplet surface under transcritical conditions. When the pressure increases, the decrease in the flow characteristics controlled by Reynolds number in liquid phase and the decrease in the viscous force of the droplet controlled by Ornisol number basically offset. With the increase in ambient temperature, the contribution of flow characteristics controlled by Reynolds number to the growth of the Kelvin-Helmholtz wave becomes small, and the influence of the inertial force of the droplet becomes weak.
-
表 1 不稳定波长与初始粒径比的试验与数值模拟结果
Table 1. Experimental and numerical simulation results of ratio of unstable wavelength to initial particle size
对比态环境压力Pr 对比态初始液滴温度Trdrop0 对比态环境温度Tramb 气流速度urel /(m·s−1) λ/d0计算值 λ/d0试验值 1.1 0.53 0.95 80 0.53 0.6 1.6 0.53 0.95 80 0.4 0.4 1.0 0.59 0.95 80 0.62 0.7 1.0 0.78 0.95 80 0.3 0.3 1.0 0.53 0.66 80 0.60 0.7 1.0 0.53 1.15 80 0.56 0.6 1.0 0.53 0.95 80 0.59 0.6 1.0 0.53 0.95 100 0.43 0.5 -
[1] GAO Y F, YANG J, WANG X B, et al. Fuel consumption and exhaust emissions under varying road condition considering effects of vehicles on other lanes[J]. International Journal of Modern Physics C, 2021, 32(10): 1-22. [2] 陆大勇, 贾和坤, 叶泽. 高压条件下椭圆孔喷雾破碎雾化分析[J]. 江苏大学学报(自然科学版), 2021, 42(3): 291-297.LU D Y, JIA H K, YE Z. Analysis of spray’s breakup and atomization of elliptical diesel nozzle under high injection pressure[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42(3): 291-297(in Chinese). [3] 王字满, 戴晓宇, 李佳峰, 等. 柴油喷雾初始阶段喷孔内流及油束破碎特性[J]. 汽车安全与节能学报, 2019, 10(2): 241-248. doi: 10.3969/j.issn.1674-8484.2019.02.013WANG Z M, DAI X Y, LI J F, et al. Nozzle internal flow and primary breakup characteristics of diesel spray during initial stage[J]. Journal of Automotive Safety and Energy, 2019, 10(2): 241-248(in Chinese). doi: 10.3969/j.issn.1674-8484.2019.02.013 [4] 仇滔, 王凯欣, 雷艳, 等. 基于动态识别柴油喷雾破碎特征的ELSA改进算法[J]. 内燃机学报, 2021, 39(2): 153-158.QIU T, WANG K X, LEI Y, et al. Dynamic identification of diesel spray breakup model feature based on improved ELSA algorithm[J]. Transactions of CSICE, 2021, 39(2): 153-158(in Chinese). [5] SULA C, GROSSHANS H, PAPALEXANDRIS M V. Assessment of droplet breakup models for spray flow simulations[J]. Flow, Turbulence and Combustion, 2020, 105(3): 889-914. doi: 10.1007/s10494-020-00139-9 [6] ASHKEZARI A Z, DIVSALAR K, MALMIR R, et al. Emission and performance analysis of DI diesel engines fueled by biodiesel blends via CFD simulation of spray combustion and different spray breakup models: A numerical study[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(4): 2527-2539. doi: 10.1007/s10973-019-08922-1 [7] 裴毅强, 王琨, 王同金, 等. GDI喷油器超高压乙醇喷雾微观特性试验[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(2): 181-189.PEI Y Q, WANG K, WANG T J, et al. Experimental on microscopic spray characteristics of GDI injector fueled with ethanol under ultra-high injection pressure[J]. Journal of Tianjin University (Science and Technology), 2018, 51(2): 181-189(in Chinese). [8] 施红辉, 师顺, 刘晨, 等. 超声速条件下亚毫米液滴的变形破碎模态[J]. 航空动力学报, 2020, 35(10): 2017-2027.SHI H H, SHI S, LIU C, et al. Deformation and fracture patterns of sub-millimeter droplets under supersonic conditions[J]. Journal of Aerospace Power, 2020, 35(10): 2017-2027(in Chinese). [9] 雷基林, 李建微, 刘懿, 等. 液滴高速撞击低温壁面的动态特性及破碎机理研究[J]. 实验流体力学, 2022, 36(5): 96-101.LEI J L, LI J W, LIU Y, et al, Experimental study on spreading and breaking mechanism of droplet impinging on low temperature wall at high speed[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 96-101(in Chinese). [10] BOURGOIN A, GUILLOU S S, THIÉBOT J, et al. Use of large-eddy simulation for the bed shear stress estimation over a dune[J]. International Journal of Sediment Research, 2021, 36(6): 687-695. doi: 10.1016/j.ijsrc.2019.10.002 [11] DAI Z, FAETH G M. Temporal properties of secondary drop breakup in the multimode breakup regime[J]. International Journal of Multiphase Flow, 2001, 27(2): 217-236. doi: 10.1016/S0301-9322(00)00015-X [12] REITZ R D. Modeling atomization processes in high-pressure vaporizing sprays[J]. Atomization and Sprays Technology, 1987, 3(309): 309-337. [13] 刘旻昀, 黄彦平, 唐佳, 等. 超临界流体物性畸变特性的多尺度研究[J]. 原子能科学技术, 2021, 55(11): 1921-1929. doi: 10.7538/yzk.2021.youxian.0825LIU M Y, HUANG Y P, TANG J, et al. Multi-scale study on property distortion mechanism of supercritical fluid[J]. Atomic Energy Science and Technology, 2021, 55(11): 1921-1929(in Chinese). doi: 10.7538/yzk.2021.youxian.0825 [14] 熊勃, 张浩, 郭鹏越, 等. 边界条件对椭球颗粒在超临界水中受力与传热特性影响的数值模拟[J]. 材料与冶金学报, 2021, 20(4): 297-303.XIONG B, ZHANG H, GUO P Y, et al. Numerical investigation on the effect of boundary condition on momentum and heat transfer of spheroids in supercritical water[J]. Journal of Materials and Metallurgy, 2021, 20(4): 297-303(in Chinese). [15] CHEN H, HU Y, LIU J W, et al. Surface characteristics analysis of fractures induced by supercritical CO2 and water through three-dimensional scanning and scanning electron micrography[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(5): 1047-1058. doi: 10.1016/j.jrmge.2021.04.006 [16] 王彦红, 陆英楠, 李洪伟, 等. 竖直螺旋管中超临界RP-3航空煤油换热数值研究[J]. 北京航空航天大学学报, 2023, 49(5): 1108-1115.WANG Y H, LU Y N, LI H W, et al. Numerical study on heat transfer of supercritical RP-3 aviation kerosene in vertical helical tubes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5): 1108-1115(in Chinese). [17] YAO H X, WEI X Z, YE H. Supercritical carbon dioxide as a new working medium for pneumatic launch: A theoretical study[J]. Defence Technology, 2021, 17(4): 1296-1306. doi: 10.1016/j.dt.2020.06.027 [18] 范世望, 朱郁波, 周璐, 等. 基于开源求解工具的超临界二氧化碳印刷电路板式换热器流动传热特性数值研究[J]. 科学技术与工程, 2021, 21(27): 11587-11594. doi: 10.3969/j.issn.1671-1815.2021.27.017FAN S W, ZHU Y B, ZHOU L, et al. Numerical study of the heat transfer in printed circuit heat exchanger with supercritical CO2 using open-source tool chain[J]. Science Technology and Engineering, 2021, 21(27): 11587-11594(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.27.017 [19] 刘志军, 孙海礼, 董超, 等. 超临界乙醇法制备超薄碳层包覆磷酸铁锂的研究[J]. 现代化工, 2021, 41(11): 86-90.LIU Z J, SUN H L, DONG C, et al. Study on synthesis of ultrathin carbon coated lithium iron phosphate via supercritical ethanol method[J]. Modern Chemical Industry, 2021, 41(11): 86-90(in Chinese). [20] LI X, DONG Z Q, LI Y, et al. A fractional-step lattice Boltzmann method for multiphase flows with complex interfacial behavior and large density contrast[J]. International Journal of Multiphase Flow, 2022, 149: 103982. doi: 10.1016/j.ijmultiphaseflow.2022.103982 [21] AWASTHI M K, ASTHANA R, UDDIN Z. Nonlinear study of Kelvin-Helmholtz instability of cylindrical flow with mass and heat transfer[J]. International Communications in Heat and Mass Transfer, 2016, 71: 216-224. doi: 10.1016/j.icheatmasstransfer.2015.12.035 [22] KIM K S, KIM M H. Simulation of the Kelvin-Helmholtz instability using a multi-liquid moving particle semi-implicit method[J]. Ocean Engineering, 2017, 130: 531-541. doi: 10.1016/j.oceaneng.2016.11.071 [23] LEE H G, KIM J. Two-dimensional Kelvin-Helmholtz instabilities of multi-component fluids[J]. European Journal of Mechanics-B, 2015, 49: 77-88. doi: 10.1016/j.euromechflu.2014.08.001 [24] 尚文强, 张莹, 陈昭奇, 等. 基于FTM方法的二维Kelvin-Helmholtz不稳定性数值模拟[J]. 计算力学学报, 2018, 35(4): 424-430. doi: 10.7511/jslx20170512003SHANG W Q, ZHANG Y, CHEN Z Q, et al. Numerical simulation of two-dimensional Kelvin-Helmholtz instabilities using a front tracking method[J]. Chinese Journal of Computational Mechanics, 2018, 35(4): 424-430(in Chinese). doi: 10.7511/jslx20170512003 [25] 过海龙, 张莹, 李文彬, 等. 基于界面追踪法的Kelvin-Helmholtz不稳定性直接数值模拟[J]. 内燃机工程, 2021, 42(3): 16-25.GUO H L, ZHANG Y, LI W B, et al. Direct numerical simulation of Kelvin-Helmholtz instability based on front tracking method[J]. Chinese Internal Combustion Engine Engineering, 2021, 42(3): 16-25(in Chinese).