留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多策略融合改进的飞蛾火焰优化算法

何加文 许贤泽 高波

何加文,许贤泽,高波. 多策略融合改进的飞蛾火焰优化算法[J]. 北京航空航天大学学报,2024,50(9):2862-2871 doi: 10.13700/j.bh.1001-5965.2022.0707
引用本文: 何加文,许贤泽,高波. 多策略融合改进的飞蛾火焰优化算法[J]. 北京航空航天大学学报,2024,50(9):2862-2871 doi: 10.13700/j.bh.1001-5965.2022.0707
HE J W,XU X Z,GAO B. Improved moth-flame optimization algorithm with multi-strategy integration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2862-2871 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0707
Citation: HE J W,XU X Z,GAO B. Improved moth-flame optimization algorithm with multi-strategy integration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2862-2871 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0707

多策略融合改进的飞蛾火焰优化算法

doi: 10.13700/j.bh.1001-5965.2022.0707
基金项目: 国家自然科学基金(51975422)
详细信息
    通讯作者:

    E-mail:xxz@whu.edu.cn

  • 中图分类号: TP301

Improved moth-flame optimization algorithm with multi-strategy integration

Funds: National Natural Science Foundation of China (51975422)
More Information
  • 摘要:

    针对飞蛾火焰优化算法容易出现局部最优解、接近全局最优时开发能力不足等问题,提出一种多策略融合改进的飞蛾火焰优化 (RGMFO) 算法。在每次迭代开始时,使用随机反向学习策略获得高质量飞蛾种群;利用高斯变异将较差的火焰个体替换为优秀个体;使用阿基米德螺线、权重因子和围绕最优火焰飞行3种方式改进飞蛾更新机制。为验证所提算法的有效性,与11个不同类型的基准函数进行寻优测试,基准函数实验结果与秩和检验表明:相较于其他优化算法及其他MFO改进算法,所提算法具有更好的全局搜索能力与更高的寻优精度。将所提算法应用于减速器设计和槽形舱壁设计的实际工程场景中,以进一步验证算法的实用性与可行性。

     

  • 图 1  E值折线图及散点图(500次迭代)

    Figure 1.  E-value line chart and scatter chart (500 iterations)

    图 2  RGMFO算法流程

    Figure 2.  RGMFO algorithm flow

    图 3  RGMFO算法与对比算法迭代收敛曲线

    Figure 3.  Iterative convergence curves of RGMFO algorithm and comparative algorithms

    表  1  各算法参数设置

    Table  1.   Parameter setting of each algorithms

    算法 参数
    RGMFO b=1,e1=0.5,e2=1,β=10
    IMFO b=1,A=0.5,B=0.6,crmin=0.55,crmax=0.65
    σmin=0.1,σmax=0.15
    CGMFO b=2,β=8
    ODSFMFO m=6,γ=5,Pc=0.5,aalpha=1,
    bbeta=1.5,l=10,b=1
    MFO b=1
    GWO a从2线性递减至0,r1r2∈[0,1]
    SCA a=2,r1a线性递减至0
    PSO Vmax=8,Vmin=−8,w=0.2,c1=3,c2=3
    DE pc=0.5
    GA pc=0.7,pm=0.1
    下载: 导出CSV

    表  2  基准测试函数

    Table  2.   Benchmark functions

    函数类型 基准测试函数 维度 搜索区间 最优值
    高维单峰 $ {F_1}(x) = \displaystyle\sum\limits_{i = 1}^d {x_i^2} $ 30 [−100,100]d 0
    $ {F_2}(x) = \displaystyle\sum\limits_{i = 1}^d {\left| {{x_i}} \right|} + \displaystyle\prod\limits_{i = 1}^d {\left| {{x_i}} \right|} $ 30 [−10,10]d 0
    $ {F_3}(x) = \displaystyle\sum\limits_{i = 1}^d {{{\left(\displaystyle\sum\limits_{j = 1}^i {{x_j}} \right)}^2}} $ 30 [−100,100]d 0
    $ {F_4}(x) = {\max _i}\{ \left| {{x_i}} \right|,1 \leqslant i \leqslant d\} $ 30 [−100,100]d 0
    $ {F_5}(x) = \displaystyle\sum\limits_{i = 1}^{d{{ - }}1} {[100{{({x_{i + 1}} - {x_i})}^2} + {{({x_i} - 1)}^2}]} $ 30 [−30,30]d 0
    $ {F_6}(x) = \displaystyle\sum\limits_{i = 1}^d {i \cdot x_i^4} + {\text{random[}}0,1{\text{)}} $ 30 [−1.28,1.28]d 0
    高维多峰 $ {F_7}(x) = \displaystyle\sum\limits_{i = 1}^d {[x_i^2 - 10\cos (2{\text{π}}{x_i} + 10)]} $ 30 [−5.12,5.12]d 0
    $ {F_8}(x) = - 20\exp \left( - 0.2\sqrt {\dfrac{1}{d}\displaystyle\sum\limits_{i = 1}^d {x_i^2} } \right) - \exp \left(\dfrac{1}{d}\displaystyle\sum\limits_{i = 1}^d {\cos (2{\text{π}}{x_i})} \right) + 20 + {\text{e}} $ 30 [−32,32]d 0
    $ {F_9}(x) = \dfrac{1}{{4\;000}}\displaystyle\sum\limits_{i = 1}^d {x_i^2} - \displaystyle\prod\limits_{i = 1}^d {\cos \left(\dfrac{{{x_i}}}{{\sqrt i }}\right)} + 1 $ 30 [−600,600]d 0
    $ {F_{10}}(x) = 0.1 \left\{ {\sin ^2}(3{\text{π}}{x_1}) + \displaystyle\sum\limits_{i = 1}^d {{{({x_i} - 1)}^2}[1 + {{\sin }^2}(3{\text{π}}{x_1} + 1)]} + {({x_d} - 1)^2}[1 + {\sin ^2}(2{\text{π}}{x_d})]\right\} + \displaystyle\sum\limits_{i = 1}^d {u({x_i},5,100,4)} $ 30 [−50,50]d 0
    低维多峰 $ {F_{11}}(x) = - \displaystyle\sum\limits_{i = 1}^{10} {{{[(X - {{\boldsymbol{a}}_{{\mathrm{SHi}}}}){{(X - {{\boldsymbol{a}}_{{\mathrm{SHi}}}})}^{\text{T}}} + {{\boldsymbol{c}}_{{\mathrm{SHi}}}}]}^{ - 1}}} $ 4 [0,10]4 −10.536
    下载: 导出CSV

    表  3  RGMFO算法及其他算法高维单峰函数寻优结果

    Table  3.   High-dimensional single-peak function optimization results of RGMFO algorithm and other algorithms

    算法平均值标准差
    F1F2F3F4F5F6F1F2F3F4F5F6
    RGMFO01.68×10−20804.19×10−2081.98×10−51.07×10−400003.07×10−51.2×10−4
    IMFO2.68×10−75.13×10−4585017.6157000.1175.15×10−76.74×10−434404.85110000.0447
    CGMFO1.66×10−237.32×10−141.81×10−177.50×10−151.46×10−30.02687.45×10−232.92×10−139.93×10−171.66×10−142.92×10−30.0218
    ODSFMFO1.96×10−244.98×10−131.40×10−148.87×10−140.0170.05638.54×10−241.55×10−126.08×10−142.12×10−130.04590.0403
    MFO497020.35960022.64940.82423504.54586006.9426900.439
    GWO9.68×10−281.01×10−162.09×10−55.60×10−727.92.18×10−31.65×10−271.19×10−164.99×10−54.36×10−70.8511.48×10−3
    PSO12.20.02691050037.274800.117.80.04184509.88261000.0839
    DE0.3990.40211200.17936.27.43×10−30.3440.31229400.1247.333.91×10−3
    GA2.12×10−52.61×10−41850014.17520.3141.31×10−56.69×10−535304.794600.0679
    下载: 导出CSV

    表  4  RGMFO算法及其他算法高维多峰函数寻优结果

    Table  4.   High-dimensional multi-peak function optimization results of RGMFO algorithm and other algorithms

    算法 平均值 标准差
    F7 F8 F9 F10 F7 F8 F9 F10
    RGMFO 0 8.88×10−16 0 7.58×10−6 0 0 0 1.10×10−5
    IMFO 69.9 1.16 8.86×10−3 7.16 19.5 0.246 9.33×10−3 5.34
    CGMFO 0 1.60×10−14 0 0.0226 0 4.58×10−14 0 0.0309
    ODSFMFO 0 1.92×10−14 0 0.0231 0 4.16×10−14 0 0.0214
    MFO 113 2.58 36.2 3.87×106 25 0.321 13.8 3.51×106
    GWO 4.09 0.0215 3.73×10−3 0.653 6.06 0.0562 8.01×10−3 0.26
    PSO 39.9 1.07 0.876 1.90×105 30.6 0.529 0.357 8.09×105
    DE 33.2 0.395 0.591 2.78 35.6 0.387 0.296 0.639
    GA 27.4 0.631 1.33×10−4 0.358 6.85 0.0874 3.17×10−4 0.965
    下载: 导出CSV

    表  5  RGMFO算法及其他算法低维多峰函数寻优结果

    Table  5.   Low-dimensional multi-peak function optimization results of RGMFO algorithm and other algorithms

    算法 平均值 标准差
    RGMFO −10.5 4.47×10−9
    IMFO −8.2 3.43
    CGMFO −10.5 4.34×10−4
    ODSFMFO −8.19 2.72
    MFO −8.72 2.88
    GWO −9.99 2.06
    PSO −3.89 1.65
    DE −10.5 6.09×10−3
    GA −10.4 0.987
    下载: 导出CSV

    表  6  Wilcoxon秩和检验p

    Table  6.   P-value for Wilcoxon rank sum test

    函数 RGMFO-IMFO RGMFO-CGMFO RGMFO-ODSFMFO RGMFO-MFO RGMFO-GWO RGMFO-SCA RGMFO-PSO RGMFO-DE RGMFO-GA
    F1 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12
    F2 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11
    F3 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12
    F4 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11
    F5 3.02×10−11 2.44×10−9 3.69×10−11 5.57×10−10 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11
    F6 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11
    F7 1.21×10−12 1.21×10−12 1.94×10−9 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12
    F8 1.21×10−12 2.82×10−5 2.16×10−6 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12
    F9 1.21×10−12 1.21×10−12 0.011 1.21×10−12 1.21×10−12 1.21×10−12 1.21×10−12
    F10 3.02×10−11 3.34×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 3.01×10−7 3.02×10−11
    F11 0.0254 3.47×10−10 2.30×10−7 3.02×10−11 3.02×10−11 3.02×10−11 3.02×10−11 2.20×10−10 3.02×10−11
    下载: 导出CSV

    表  7  RGMFO算法及其他算法寻优运算时间

    Table  7.   Optimization operation time of RGMFO algorithm and other algorithms s

    函数RGMFOIMFOCGMFOODSFMFOMFOGWOSCAPSODEGA
    F10.257 90.163 10.084 20.785 50.06750.24060.17290.05790.18580.0850
    F20.469 50.363 90.193 71.020 60.07160.23310.17670.06060.12230.0750
    F30.503 80.389 30.222 81.036 60.09050.24760.19480.07610.14040.0839
    F40.535 00.373 70.198 11.023 00.07020.22570.18150.11360.12060.0729
    F50.567 60.357 80.183 31.012 70.06480.23690.16850.05690.14550.0656
    F60.980 20.747 90.366 21.608 00.21530.39630.39330.20930.23610.1320
    F70.718 60.426 60.200 41.324 60.09610.23950.18780.09010.13780.0779
    F80.732 10.466 90.230 51.494 80.10010.25310.21310.09240.14010.0800
    F90.727 00.605 80.320 01.995 90.16720.31480.26440.12710.20960.1371
    F101.172 20.740 30.415 11.930 50.32770.45710.47700.32050.68670.4184
    F110.809 20.473 80.346 41.463 10.15270.17110.16070.13790.34270.2041
    下载: 导出CSV

    表  8  高维单峰函数消融实验结果

    Table  8.   High-dimensional single-peak function experimental results of model ablation

    算法平均值标准差
    F1F2F3F4F5F6F1F2F3F4F5F6
    RGMFO01.68×10−20804.19×10−2081.98×10−51.07×10−400003.07×10−51.20×10−4
    GMFO2.00×10−2106.63×10−1152.59×10−1653.66×10−1102.660.022503.16×10−11401.86×10−1093.230.0164
    RMFO0.2631.667.380.1785.72×10−50.620.1440.8235.470.08882.15×10−41.02
    MFO497020.35960022.64940.82423504.54586006.9426900.439
    下载: 导出CSV

    表  9  高维多峰函数消融实验结果

    Table  9.   High-dimensional multi-peak function experimental results of model ablation

    算法平均值标准差
    F7F8F9F10F7F8F9F10
    RGMFO08.88×10−1607.58×10−60001.10×10−5
    GMFO08.88×10−1600.1450000.0615
    RMFO0.4770.01470.01032.37×10−50.9470.0166.74×10−34.97×10−5
    MFO1132.5836.23.87×106250.32113.83.51×106
    下载: 导出CSV

    表  10  低维多峰函数消融实验结果

    Table  10.   Low-dimensional multi-peak function experimental results of model ablation

    算法 平均值 标准差
    RGMFO −10.5 4.47×10−9
    GMFO −7.72 2.66
    RMFO −5.13 1.83×10−12
    MFO −8.72 2.88
    下载: 导出CSV

    表  11  减速器设计变量边界约束

    Table  11.   Reducer design variable boundary constraints

    变量 下界 上界
    x1 2.6 3.6
    x2 0.7 0.8
    x3 17 28
    x4 7.3 8.3
    x5 7.8 8.3
    x6 2.9 3.9
    x7 5.0 5.5
    下载: 导出CSV

    表  12  减速器设计结果

    Table  12.   Reducer design results

    算法 x1 x2 x3 x4 x5 x6 x7 适应度值
    RGMFO 3.50 0.70 17.00 7.30 7.80 3.35 5.29 2996.41
    IMFO 3.50 0.70 17.00 7.30 7.80 3.35 5.29 2996.41
    CGMFO 3.50 0.70 17.00 7.60 7.80 3.80 5.29 3130.09
    ODSFMFO 3.50 0.70 17.00 7.30 7.80 3.35 5.29 2996.41
    MFO 3.50 0.70 17.00 7.30 7.80 3.35 5.37 3047.56
    GWO 3.50 0.70 17.00 7.39 7.85 3.36 5.29 3003.19
    SCA 3.60 0.70 17.00 8.30 8.30 3.45 5.37 3133.94
    PSO 3.60 0.70 17.00 7.30 8.28 3.35 5.29 3046.37
    DE 3.50 0.70 17.00 7.30 7.80 3.35 5.29 2996.41
    GA 3.57 0.70 17.16 7.67 7.82 3.43 5.30 3096.49
    下载: 导出CSV

    表  13  槽形舱壁设计结果

    Table  13.   Trough bulkhead design results

    算法 x1 x2 x3 x4 适应度值
    RGMFO 37.51 33.11 37.51 0.74 5.89
    IMFO 37.83 33.19 37.83 0.74 5.89
    CGMFO 31.34 32.48 37.88 0.78 6.23
    ODSFMFO 38.89 33.46 38.89 0.76 5.90
    MFO 37.28 33.23 38.13 0.74 5.90
    GWO 37.69 33.20 37.85 0.74 5.90
    SCA 32.71 35.53 46.11 0.90 6.70
    PSO 40.91 33.30 39.36 0.79 6.02
    DE 37.49 33.11 37.49 0.73 5.89
    GA 90.70 33.53 75.91 1.67 10.29
    下载: 导出CSV
  • [1] MIRJALILI S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems, 2015, 89: 228-249. doi: 10.1016/j.knosys.2015.07.006
    [2] 张淑清, 段晓宁, 张立国, 等. Tsne降维可视化分析及飞蛾火焰优化ELM算法在电力负荷预测中应用[J]. 中国电机工程学报, 2021, 41(9): 3120-3130.

    ZHANG S Q, DUAN X N, ZHANG L G, et al. Tsne dimension reduction visualization analysis and moth flame optimized ELM algorithm applied in power load forecasting[J]. Proceedings of the CSEE, 2021, 41(9): 3120-3130(in Chinese).
    [3] 安许锋, 田洲, 钱锋. 基于多策略扰动机制的飞蛾火焰算法及在乙烯聚合过程动力学参数估计中的应用[J]. 高校化学工程学报, 2018, 32(4): 918-925. doi: 10.3969/j.issn.1003-9015.2018.04.023

    AN X F, TIAN Z, QIAN F. Moth-flame optimization algorithm based on multi-strategy disturbance and its application in kinetic parameter estimation of ethylene polymerization[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(4): 918-925(in Chinese). doi: 10.3969/j.issn.1003-9015.2018.04.023
    [4] 田鸿, 陈国彬, 刘超. 新型飞蛾火焰优化算法的研究[J]. 计算机工程与应用, 2019, 55(16): 138-143. doi: 10.3778/j.issn.1002-8331.1805-0027

    TIAN H, CHEN G B, LIU C. Research on new moth-flame optimization algorithm[J]. Computer Engineering and Applications, 2019, 55(16): 138-143(in Chinese). doi: 10.3778/j.issn.1002-8331.1805-0027
    [5] 黄鹤, 吴琨, 王会峰, 等. 基于改进飞蛾扑火算法的无人机低空突防路径规划[J]. 中国惯性技术学报, 2021, 29(2): 256-263.

    HUANG H, WU K, WANG H F, et al. Path planning of UAV low altitude penetration based on improved moth-flame optimization[J]. Journal of Chinese Inertial Technology, 2021, 29(2): 256-263(in Chinese).
    [6] 刘倩, 冯艳红, 陈嶷瑛. 基于混沌初始化和高斯变异的飞蛾火焰优化算法[J]. 郑州大学学报(工学版), 2021, 42(3): 53-58.

    LIU Q, FENG Y H, CHEN Y Y. Moth-flame optimization algorithm based on chaotic initialization and Gaussian mutation[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(3): 53-58(in Chinese).
    [7] PELUSI D, MASCELLA R, TALLINI L, et al. An improved moth-flame optimization algorithm with hybrid search phase[J]. Knowledge-Based Systems, 2020, 191: 105277. doi: 10.1016/j.knosys.2019.105277
    [8] LI Z F, ZENG J H, CHEN Y Q, et al. Death mechanism-based moth-flame optimization with improved flame generation mechanism for global optimization tasks[J]. Expert Systems with Applications, 2021, 183: 115436. doi: 10.1016/j.eswa.2021.115436
    [9] 刘宝宁, 章卫国, 李广文, 等. 一种改进的多目标粒子群优化算法[J]. 北京航空航天大学学报, 2013, 39(4): 458-462.

    LIU B N, ZHANG W G, LI G W, et al. Improved multi-objective particle swarm optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 458-462(in Chinese).
    [10] MIRJALILI S. SCA: A sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. doi: 10.1016/j.knosys.2015.12.022
    [11] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007
    [12] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Piscataway: IEEE Press, 2006, 1: 695-701.
    [13] LONG W, JIAO J J, LIANG X M, et al. A random opposition-based learning grey wolf optimizer[J]. IEEE Access, 2019, 7: 113810-113825. doi: 10.1109/ACCESS.2019.2934994
    [14] XU Y T, CHEN H L, LUO J, et al. Enhanced moth-flame optimizer with mutation strategy for global optimization[J]. Information Sciences, 2019, 492: 181-203. doi: 10.1016/j.ins.2019.04.022
    [15] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris Hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. doi: 10.1016/j.future.2019.02.028
  • 加载中
图(3) / 表(13)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  102
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-11-08
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答