留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类双锥型升力式返回器横航向不稳定性分析及改进

陈刚 孙雪 李广兴 赵丹 马建颖 何程

陈刚,孙雪,李广兴,等. 类双锥型升力式返回器横航向不稳定性分析及改进[J]. 北京航空航天大学学报,2024,50(9):2800-2809 doi: 10.13700/j.bh.1001-5965.2022.0708
引用本文: 陈刚,孙雪,李广兴,等. 类双锥型升力式返回器横航向不稳定性分析及改进[J]. 北京航空航天大学学报,2024,50(9):2800-2809 doi: 10.13700/j.bh.1001-5965.2022.0708
CHEN G,SUN X,LI G X,et al. Analysis and improvement of lateral instability of quasi-biconical lifting reentry spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2800-2809 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0708
Citation: CHEN G,SUN X,LI G X,et al. Analysis and improvement of lateral instability of quasi-biconical lifting reentry spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2800-2809 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0708

类双锥型升力式返回器横航向不稳定性分析及改进

doi: 10.13700/j.bh.1001-5965.2022.0708
详细信息
    通讯作者:

    E-mail:agoniage@163.com

  • 中图分类号: V221+.3;V412.4+.4

Analysis and improvement of lateral instability of quasi-biconical lifting reentry spacecraft

More Information
  • 摘要:

    类双锥型升力式返回器的横航向稳定性对其理想再入策略的实施构成严苛的约束,且在设计阶段需要进行专门分析。针对类双锥型升力式返回器的标称再入过程,使用数值仿真方法计算该飞行器在全速域、宽迎角范围内的横航向稳定性,结合流场特征分析亚/跨/超声速速域内的横航向稳定性突变规律;重点分析涡流发生器、航向增强型面、重心偏置对横航向稳定性的影响及其作用机理,最终确定了航向舵偏转与重心偏置相结合的方案就是最佳横航向增稳方案。

     

  • 图 1  升力式返回器外形

    Figure 1.  Configuration of lifting reentry spacecraft

    图 2  升力式返回器理想再入策略

    Figure 2.  Ideal reentry strategy of lifting reentry spacecraft

    图 3  升力式返回器计算网格

    Figure 3.  Computational mesh of lifting reentry spacecraft

    图 4  返回器横航向特性随马赫数变化

    Figure 4.  Changes in the lateral features of reentry spacecraft with Mach number

    图 5  再入迎角走廊

    Figure 5.  Reentry corridor of angle of attack

    图 6  横航向压心位置随迎角变化(Ma = 5)

    Figure 6.  Variation of lateral pressure center with angle of attack (Ma = 5)

    图 7  横航向稳定性变化(α = 30°)

    Figure 7.  Lateral stability variation (α = 30°)

    图 8  流场速度分布

    Figure 8.  Flow field velocity distribution

    图 9  压强及侧向力分布

    Figure 9.  Pressure and lateral force distribution

    图 10  涡流发生器设置及计算网格

    Figure 10.  Vortex generator set and computation mesh

    图 11  涡流发生器不同安装位置及对应流场速度分布

    Figure 11.  Vortex generator locations and corresponding field velocity distribution

    图 12  横航向稳定性增强措施

    Figure 12.  Lateral stability enhancement measures

    图 13  使用航向增强型面流场速度分布

    Figure 13.  Flow field velocity distribution with lateral stability enhancement surfaces

    图 14  不同构型返回器与xy平面交线压力分布对比

    Figure 14.  Pressure distribution on intersection lines of xy plane and reentry spacecraft with different configurations

    图 15  航向增强返回器横航向特性计算结果分析

    Figure 15.  Calculated lateral feature of reentry spacecraft lateral stability enhancement analysis

    图 16  重心下偏6%返回器横航向特性计算结果

    Figure 16.  Calculated lateral features of reentry spacecraft center-of-gravity offset 6%

    表  1  类神舟返回器计算值与实验值对比

    Table  1.   Comparison of calculated and experimental values of Shenzhou-like reentry spacecraft

    参数项 CA CN CL CD Cm
    预测值 1.315 0.1587 0.3006 1.290 0.0999
    实验值 1.335 0.1590 0.3072 1.309 0.1025
    下载: 导出CSV
  • [1] VASHCHENKOV P, KASHKOVSKY A, DYADKIN A, et al. Numerical study of high-altitude aerodynamics of the clipper reentry vehicle[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 1188.
    [2] MOSELEY W C, GRAHAM R E, HUGHES J E. Aerodynamic stability characteristics of the apollo command module: NASA TN D-4688[R]. Houston: Manned Spacecraft Center, 1968: 171-175.
    [3] ABE T, SATO S I, MATSUKAWA Y, et al. Study for dynamically unstable motion of reentry capsule[C]//Proceedings of the 34th Thermophysics Conference. Reston: AIAA, 2000: 2589.
    [4] 张涵信, 袁先旭, 叶友达, 等. 飞船返回舱俯仰振荡的动态稳定性研究[J]. 空气动力学学报, 2002, 20(3): 247-259. doi: 10.3969/j.issn.0258-1825.2002.03.001

    ZHANG H X, YUAN X X, YE Y D, et al. Research on the dynamic stability of an orbital reentry vehicle in pitching[J]. Acta Aerodynamica Sinica, 2002, 20(3): 247-259(in Chinese). doi: 10.3969/j.issn.0258-1825.2002.03.001
    [5] 袁先旭, 张涵信, 谢昱飞. 飞船返回舱再入俯仰动稳定吸引子数值仿真[J]. 空气动力学学报, 2007, 25(4): 431-436. doi: 10.3969/j.issn.0258-1825.2007.04.004

    YUAN X X, ZHANG H X, XIE Y F. Numerical simulation for dynamic stability in pitching of unfinned reentry capsule and bifurcation with Mach number prediction[J]. Acta Aerodynamica Sinica, 2007, 25(4): 431-436(in Chinese). doi: 10.3969/j.issn.0258-1825.2007.04.004
    [6] TERAMOTO S, FUJII K. Study on the mechanism of the instability of a re-entry capsule at transonic speeds[C]//Proceedings of the Fluids Conference and Exhibit. Reston: AIAA, 2000: 2603.
    [7] TERAMOTO S, HIRAKI K, FUJII K. Numerical analysis of dynamic stability of a reentry capsule at transonic speeds[J]. AIAA Journal, 2001, 39(4): 646-653. doi: 10.2514/2.1357
    [8] 朱德华, 沈清, 杨武兵. 返回舱高雷诺数再入过程底部流动稳定性[J]. 力学学报, 2021, 53(3): 752-760. doi: 10.6052/0459-1879-20-318

    ZHU D H, SHEN Q, YANG W B. Base flow stability of return capsule during reentry process with high Reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 752-760(in Chinese). doi: 10.6052/0459-1879-20-318
    [9] MITCHELTREE R, FREMAUX C, YATES L. Subsonic static and dynamic aerodynamics of blunt entry vehicles[C]//Proceedings of the 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999: 1020.
    [10] 何开锋, 和争春. 飞船返回舱跨声速全局稳定性研究[J]. 飞行力学, 1999, 17(3): 34-38. doi: 10.3969/j.issn.1002-0853.1999.03.007

    HE K F, HE Z C. The global stability analysis of reentry capsule transonic flight[J]. Flight Dynamics, 1999, 17(3): 34-38(in Chinese). doi: 10.3969/j.issn.1002-0853.1999.03.007
    [11] 宋玉辉, 陈农, 秦永明. 亚跨超声速返回舱动稳定特性[J]. 航天返回与遥感, 2014, 35(2): 31-38. doi: 10.3969/j.issn.1009-8518.2014.02.005

    SONG Y H, CHEN N, QIN Y M. Sub-, trans- and super-sonic dynamic stability characteristics for reentry capsule[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(2): 31-38(in Chinese). doi: 10.3969/j.issn.1009-8518.2014.02.005
    [12] 胡静, 宋玉辉, 陈农, 等. 返回舱动稳定特性风洞试验的影响参数[J]. 航天返回与遥感, 2013, 34(5): 14-19. doi: 10.3969/j.issn.1009-8518.2013.05.003

    HU J, SONG Y H, CHEN N, et al. Study of key parameters for dynamic stability of reentry capsule[J]. Spacecraft Recovery & Remote Sensing, 2013, 34(5): 14-19(in Chinese). doi: 10.3969/j.issn.1009-8518.2013.05.003
    [13] 宋威, 艾邦成, 蒋增辉, 等. 返回舱跨声速自由飞行的静动稳定性[J]. 实验流体力学, 2019, 33(4): 89-94. doi: 10.11729/syltlx20180083

    SONG W, AI B C, JIANG Z H, et al. Free flight static and dynamic aerodynamic characteristics for re-entry capsule at transonic speed[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 89-94(in Chinese). doi: 10.11729/syltlx20180083
    [14] 鲍文, 姚照辉. 综合离心力/气动力的升力体高超声速飞行器纵向运动建模研究[J]. 宇航学报, 2009, 30(1): 128-133. doi: 10.3873/j.issn.1000-1328.2009.00.023

    BAO W, YAO Z H. Study on longitudinal modeling for integrated centrifugal/aero force lifting-body hypersonic vehicles[J]. Journal of Astronautics, 2009, 30(1): 128-133(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.00.023
    [15] 贾子安, 张陈安, 王柯穆, 等. 乘波布局高超声速飞行器纵向静稳定特性分析[J]. 中国科学: 技术科学, 2014, 44(10): 1114-1122. doi: 10.1360/N092014-00058

    JIA Z A, ZHANG C A, WANG K M, et al. Longitudinal static stability analysis of hypersonic waveriders[J]. Scientia Sinica (Technologica), 2014, 44(10): 1114-1122(in Chinese). doi: 10.1360/N092014-00058
    [16] 贾子安. 乘波飞行器气动布局初步设计研究[D]. 北京: 中国科学院大学, 2014: 56-75.

    JIA Z A. Preliminary design of aerodynamic layout of waverider vehicle[D]. Beijing: University of Chinese Academy of Sciences, 2014: 56-75(in Chinese).
    [17] 王柯穆. 幂次体乘波飞行器纵向静稳定及升阻比优化设计[D]. 北京: 中国科学院大学, 2013.

    WANG K M. Longitudinal static stability and optimal design of lift-drag ratio of power-law waverider[D]. Beijing: University of Chinese Academy of Sciences, 2013(in Chinese).
    [18] MANGIN B, BENAY R, CHANETZ B, et al. Optimization of viscous waveriders derived from axisymmetric power-law blunt body flows[J]. Journal of Spacecraft and Rockets, 2006, 43(5): 990-998. doi: 10.2514/1.20079
    [19] 高清, 赵俊波, 李潜. 类HTV-2横侧向稳定性研究[J]. 宇航学报, 2014, 35(6): 657-662.

    GAO Q, ZHAO J B, LI Q. Study on lateral-directional stability of HTV-2 like configuration[J]. Journal of Astronautics, 2014, 35(6): 657-662(in Chinese).
    [20] 高清, 李潜. 美国高超声速飞行器横侧向稳定性研究[J]. 飞航导弹, 2012(12): 14-18.

    GAO Q, LI Q. Study on lateral stability of American hypersonic vehicle[J]. Aerodynamic Missile Journal, 2012(12): 14-18(in Chinese).
    [21] 祝立国, 王永丰, 庄逢甘, 等. 高速高机动飞行器的横航向偏离预测判据分析[J]. 宇航学报, 2007, 28(6): 1550-1553. doi: 10.3321/j.issn:1000-1328.2007.06.022

    ZHU L G, WANG Y F, ZHUANG F G, et al. The lateral-directional departure criteria analysis of high-speed and high maneuverability aircraft[J]. Journal of Astronautics, 2007, 28(6): 1550-1553(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.06.022
    [22] 闵昌万. 高超声速飞行器横侧向气动布局准则研究[J]. 宇航总体技术, 2018, 2(3): 1-10.

    MIN C W. The aerodynamic configuration criteria for the lateral-directional stability of hypersonic vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(3): 1-10(in Chinese).
    [23] 王亮, 周玲. 基于改进的k-ω-γ转捩模式预测高超声速飞行器气动特性[J]. 空气动力学学报, 2021, 39(3): 51-61. doi: 10.7638/kqdlxxb-2019.0146

    WANG L, ZHOU L. Prediction of aerodynamic characteristics of hypersonic vehicle by improved k-ω-γ transition model[J]. Acta Aerodynamica Sinica, 2021, 39(3): 51-61(in Chinese). doi: 10.7638/kqdlxxb-2019.0146
    [24] 钱翼稷. 空气动力学[M]. 北京: 北京航空航天大学出版社, 2004: 287-289.

    QIAN Y J. Aerodynamics[M]. Beijing: Beihang University Press, 2004: 287-289(in Chinese).
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  98
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-11
  • 录用日期:  2022-10-04
  • 网络出版日期:  2022-10-10
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答