Analysis and improvement of lateral instability of quasi-biconical lifting reentry spacecraft
-
摘要:
类双锥型升力式返回器的横航向稳定性对其理想再入策略的实施构成严苛的约束,且在设计阶段需要进行专门分析。针对类双锥型升力式返回器的标称再入过程,使用数值仿真方法计算该飞行器在全速域、宽迎角范围内的横航向稳定性,结合流场特征分析亚/跨/超声速速域内的横航向稳定性突变规律;重点分析涡流发生器、航向增强型面、重心偏置对横航向稳定性的影响及其作用机理,最终确定了航向舵偏转与重心偏置相结合的方案就是最佳横航向增稳方案。
Abstract:The lateral stability of the quasi-biconical lifting reentry spacecraft is a strict constraint on the implementation of its ideal reentry strategy, which requires specialized analysis in the design stage. In this paper, for the nominal reentry process of the quasi-biconical lifting reentry spacecraft, the lateral stability of the spacecraft in the range of full speed and wide angle of attack was calculated by using the numerical simulation method. According to the flow field characteristics, the mutation regularity of the lateral stability in the sub-/trans-/supersonic domain was analyzed. Then, the effect of the eddy current generator, lateral stability enhancement surface, and center-of-gravity offset on the lateral stability was analyzed, as well as the corresponding mechanism. The results reveal that the combination of rudder deflection and center-of-gravity offset is the optimal solution to enhance lateral stability.
-
表 1 类神舟返回器计算值与实验值对比
Table 1. Comparison of calculated and experimental values of Shenzhou-like reentry spacecraft
参数项 CA CN CL CD Cm 预测值 1.315 0.1587 − 0.3006 1.290 0.0999 实验值 1.335 0.1590 − 0.3072 1.309 0.1025 -
[1] VASHCHENKOV P, KASHKOVSKY A, DYADKIN A, et al. Numerical study of high-altitude aerodynamics of the clipper reentry vehicle[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 1188. [2] MOSELEY W C, GRAHAM R E, HUGHES J E. Aerodynamic stability characteristics of the apollo command module: NASA TN D-4688[R]. Houston: Manned Spacecraft Center, 1968: 171-175. [3] ABE T, SATO S I, MATSUKAWA Y, et al. Study for dynamically unstable motion of reentry capsule[C]//Proceedings of the 34th Thermophysics Conference. Reston: AIAA, 2000: 2589. [4] 张涵信, 袁先旭, 叶友达, 等. 飞船返回舱俯仰振荡的动态稳定性研究[J]. 空气动力学学报, 2002, 20(3): 247-259. doi: 10.3969/j.issn.0258-1825.2002.03.001ZHANG H X, YUAN X X, YE Y D, et al. Research on the dynamic stability of an orbital reentry vehicle in pitching[J]. Acta Aerodynamica Sinica, 2002, 20(3): 247-259(in Chinese). doi: 10.3969/j.issn.0258-1825.2002.03.001 [5] 袁先旭, 张涵信, 谢昱飞. 飞船返回舱再入俯仰动稳定吸引子数值仿真[J]. 空气动力学学报, 2007, 25(4): 431-436. doi: 10.3969/j.issn.0258-1825.2007.04.004YUAN X X, ZHANG H X, XIE Y F. Numerical simulation for dynamic stability in pitching of unfinned reentry capsule and bifurcation with Mach number prediction[J]. Acta Aerodynamica Sinica, 2007, 25(4): 431-436(in Chinese). doi: 10.3969/j.issn.0258-1825.2007.04.004 [6] TERAMOTO S, FUJII K. Study on the mechanism of the instability of a re-entry capsule at transonic speeds[C]//Proceedings of the Fluids Conference and Exhibit. Reston: AIAA, 2000: 2603. [7] TERAMOTO S, HIRAKI K, FUJII K. Numerical analysis of dynamic stability of a reentry capsule at transonic speeds[J]. AIAA Journal, 2001, 39(4): 646-653. doi: 10.2514/2.1357 [8] 朱德华, 沈清, 杨武兵. 返回舱高雷诺数再入过程底部流动稳定性[J]. 力学学报, 2021, 53(3): 752-760. doi: 10.6052/0459-1879-20-318ZHU D H, SHEN Q, YANG W B. Base flow stability of return capsule during reentry process with high Reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 752-760(in Chinese). doi: 10.6052/0459-1879-20-318 [9] MITCHELTREE R, FREMAUX C, YATES L. Subsonic static and dynamic aerodynamics of blunt entry vehicles[C]//Proceedings of the 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999: 1020. [10] 何开锋, 和争春. 飞船返回舱跨声速全局稳定性研究[J]. 飞行力学, 1999, 17(3): 34-38. doi: 10.3969/j.issn.1002-0853.1999.03.007HE K F, HE Z C. The global stability analysis of reentry capsule transonic flight[J]. Flight Dynamics, 1999, 17(3): 34-38(in Chinese). doi: 10.3969/j.issn.1002-0853.1999.03.007 [11] 宋玉辉, 陈农, 秦永明. 亚跨超声速返回舱动稳定特性[J]. 航天返回与遥感, 2014, 35(2): 31-38. doi: 10.3969/j.issn.1009-8518.2014.02.005SONG Y H, CHEN N, QIN Y M. Sub-, trans- and super-sonic dynamic stability characteristics for reentry capsule[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(2): 31-38(in Chinese). doi: 10.3969/j.issn.1009-8518.2014.02.005 [12] 胡静, 宋玉辉, 陈农, 等. 返回舱动稳定特性风洞试验的影响参数[J]. 航天返回与遥感, 2013, 34(5): 14-19. doi: 10.3969/j.issn.1009-8518.2013.05.003HU J, SONG Y H, CHEN N, et al. Study of key parameters for dynamic stability of reentry capsule[J]. Spacecraft Recovery & Remote Sensing, 2013, 34(5): 14-19(in Chinese). doi: 10.3969/j.issn.1009-8518.2013.05.003 [13] 宋威, 艾邦成, 蒋增辉, 等. 返回舱跨声速自由飞行的静动稳定性[J]. 实验流体力学, 2019, 33(4): 89-94. doi: 10.11729/syltlx20180083SONG W, AI B C, JIANG Z H, et al. Free flight static and dynamic aerodynamic characteristics for re-entry capsule at transonic speed[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 89-94(in Chinese). doi: 10.11729/syltlx20180083 [14] 鲍文, 姚照辉. 综合离心力/气动力的升力体高超声速飞行器纵向运动建模研究[J]. 宇航学报, 2009, 30(1): 128-133. doi: 10.3873/j.issn.1000-1328.2009.00.023BAO W, YAO Z H. Study on longitudinal modeling for integrated centrifugal/aero force lifting-body hypersonic vehicles[J]. Journal of Astronautics, 2009, 30(1): 128-133(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.00.023 [15] 贾子安, 张陈安, 王柯穆, 等. 乘波布局高超声速飞行器纵向静稳定特性分析[J]. 中国科学: 技术科学, 2014, 44(10): 1114-1122. doi: 10.1360/N092014-00058JIA Z A, ZHANG C A, WANG K M, et al. Longitudinal static stability analysis of hypersonic waveriders[J]. Scientia Sinica (Technologica), 2014, 44(10): 1114-1122(in Chinese). doi: 10.1360/N092014-00058 [16] 贾子安. 乘波飞行器气动布局初步设计研究[D]. 北京: 中国科学院大学, 2014: 56-75.JIA Z A. Preliminary design of aerodynamic layout of waverider vehicle[D]. Beijing: University of Chinese Academy of Sciences, 2014: 56-75(in Chinese). [17] 王柯穆. 幂次体乘波飞行器纵向静稳定及升阻比优化设计[D]. 北京: 中国科学院大学, 2013.WANG K M. Longitudinal static stability and optimal design of lift-drag ratio of power-law waverider[D]. Beijing: University of Chinese Academy of Sciences, 2013(in Chinese). [18] MANGIN B, BENAY R, CHANETZ B, et al. Optimization of viscous waveriders derived from axisymmetric power-law blunt body flows[J]. Journal of Spacecraft and Rockets, 2006, 43(5): 990-998. doi: 10.2514/1.20079 [19] 高清, 赵俊波, 李潜. 类HTV-2横侧向稳定性研究[J]. 宇航学报, 2014, 35(6): 657-662.GAO Q, ZHAO J B, LI Q. Study on lateral-directional stability of HTV-2 like configuration[J]. Journal of Astronautics, 2014, 35(6): 657-662(in Chinese). [20] 高清, 李潜. 美国高超声速飞行器横侧向稳定性研究[J]. 飞航导弹, 2012(12): 14-18.GAO Q, LI Q. Study on lateral stability of American hypersonic vehicle[J]. Aerodynamic Missile Journal, 2012(12): 14-18(in Chinese). [21] 祝立国, 王永丰, 庄逢甘, 等. 高速高机动飞行器的横航向偏离预测判据分析[J]. 宇航学报, 2007, 28(6): 1550-1553. doi: 10.3321/j.issn:1000-1328.2007.06.022ZHU L G, WANG Y F, ZHUANG F G, et al. The lateral-directional departure criteria analysis of high-speed and high maneuverability aircraft[J]. Journal of Astronautics, 2007, 28(6): 1550-1553(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.06.022 [22] 闵昌万. 高超声速飞行器横侧向气动布局准则研究[J]. 宇航总体技术, 2018, 2(3): 1-10.MIN C W. The aerodynamic configuration criteria for the lateral-directional stability of hypersonic vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(3): 1-10(in Chinese). [23] 王亮, 周玲. 基于改进的k-ω-γ转捩模式预测高超声速飞行器气动特性[J]. 空气动力学学报, 2021, 39(3): 51-61. doi: 10.7638/kqdlxxb-2019.0146WANG L, ZHOU L. Prediction of aerodynamic characteristics of hypersonic vehicle by improved k-ω-γ transition model[J]. Acta Aerodynamica Sinica, 2021, 39(3): 51-61(in Chinese). doi: 10.7638/kqdlxxb-2019.0146 [24] 钱翼稷. 空气动力学[M]. 北京: 北京航空航天大学出版社, 2004: 287-289.QIAN Y J. Aerodynamics[M]. Beijing: Beihang University Press, 2004: 287-289(in Chinese).