留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舵机电动负载模拟器迭代学习控制

刘晓琳 李晋恺

刘晓琳,李晋恺. 舵机电动负载模拟器迭代学习控制[J]. 北京航空航天大学学报,2024,50(9):2727-2738 doi: 10.13700/j.bh.1001-5965.2022.0711
引用本文: 刘晓琳,李晋恺. 舵机电动负载模拟器迭代学习控制[J]. 北京航空航天大学学报,2024,50(9):2727-2738 doi: 10.13700/j.bh.1001-5965.2022.0711
LIU X L,LI J K. Iterative learning control of electric load simulator of aircraft steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2727-2738 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0711
Citation: LIU X L,LI J K. Iterative learning control of electric load simulator of aircraft steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2727-2738 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0711

舵机电动负载模拟器迭代学习控制

doi: 10.13700/j.bh.1001-5965.2022.0711
基金项目: 中国民航大学第十一期波音基金(20210715113)
详细信息
    通讯作者:

    E-mail:caucyanjiusheng@163.com

  • 中图分类号: V249.1;TP273

Iterative learning control of electric load simulator of aircraft steering gear

Funds: The 11th Boeing Fund of Civil Aviation University of China (20210715113)
More Information
  • 摘要:

    针对舵机电动负载模拟器(ELSSG)受到多余力矩干扰的问题,提出了一种结合迭代学习控制与误差符号鲁棒积分控制(RISE)的复合控制器。建立了ELSSG的数学模型,分析了多余力矩的产生机理。在硬件结构上,引入了金属-橡胶缓冲弹簧以提高系统稳定性及加载精度;在控制策略上,基于误差符号鲁棒积分控制与自适应遗忘因子改进的引导信号迭代学习控制设计了复合控制器,并证明了该迭代学习控制的收敛条件。通过仿真实验证明了复合控制器与传统迭代学习控制方法、PID控制方法相比,能够更加有效地消除多余力矩干扰,提高ELSSG加载力矩输出精度。

     

  • 图 1  ELSSG工作原理

    Figure 1.  Working principle of ELSSG

    图 2  ELSSG数学模型

    Figure 2.  Mathematical model of ELSSG

    图 3  不同弹性系数的系统频率特性曲线

    Figure 3.  Frequency characteristic curves of systems with different elastic coefficients

    图 4  复合控制器结构示意图

    Figure 4.  Structure diagram of compound controller

    图 5  10次迭代下的系统输出

    Figure 5.  System output at 10 iterations

    图 6  20次迭代下的系统输出

    Figure 6.  System output at 20 iterations

    图 7  TLAB/Simulink模型结构示意图

    Figure 7.  Schematic of MATLAB/Simulink model structure

    图 8  变频率正弦信号(扫频信号)图像

    Figure 8.  Sinusoidal signal (sweep frequency signal) image with variable frequency

    图 9  不同预设力矩下系统跟踪误差曲线

    Figure 9.  System tracking error curves under different preset torques

    图 10  预设信号频率为1 Hz时ELSSG输出力矩

    Figure 10.  ELSSG output torque when preset signal frequency is 1 Hz

    图 11  预设信号频率为1 Hz时ELSSG输出力矩误差

    Figure 11.  ELSSG output torque error when preset signal frequency is 1 Hz

    图 12  预设信号频率为1 Hz时力矩误差随迭代周期变化

    Figure 12.  Variation of torque error with iterative periods when preset signal frequency is 1 Hz

    图 13  预设信号频率为10 Hz时ELSSG输出力矩

    Figure 13.  ELSSG output torque when preset signal frequency is 10 Hz

    图 14  预设信号频率为10 Hz时ELSSG输出力矩误差

    Figure 14.  ELSSG output torque error when preset signal frequency is 10 Hz

    图 15  预设信号频率为10 Hz时力矩误差随迭代周期变化

    Figure 15.  Variation of torque error with iterative periods when preset signal frequency is 10 Hz

    图 16  添加舵机前馈控制后控制结构示意图

    Figure 16.  Control structure after adding feed forward control of aircraft steering gear

    图 17  添加不同前馈控制方法后不同迭代周期下的力矩跟踪误差

    Figure 17.  Torque tracking error of different iteration periods after adding different feedforward control methods

    表  1  不同迭代学习控制下系统的跟踪误差

    Table  1.   Tracking error of system under different iterative learning control

    方法 迭代次数 最大跟踪误差/(N·m) 误差率/%
    传统迭代
    学习控制
    10 0.41 51.2
    20 0.0517 6.46
    改进迭代
    学习控制
    10 0.1995 24.9
    20 0.0234 2.925
    下载: 导出CSV

    表  2  预设信号为1 Hz时力矩跟踪误差

    Table  2.   Torque tracking error when preset signal is 1 Hz

    方法 最大跟踪误差/(N·m) 误差率/%
    本文方法 0.06 0.12
    迭代学习控制+PID控制 1.67 3.34
    引导信号迭代学习控制+PID控制 0.92 1.84
    迭代学习控制+RISE控制 2.59 5.18
    下载: 导出CSV

    表  3  预设信号为10 Hz时力矩跟踪误差

    Table  3.   Torque tracking error when preset signal is 10 Hz

    方法 最大跟踪误差/(N·m) 误差率/%
    本文方法 2.60 5.20
    迭代学习控制+PID控制 6.70 13.40
    引导信号迭代学习控制+PID控制 5.44 10.88
    迭代学习控制+RISE控制 8.57 17.14
    下载: 导出CSV

    表  4  前馈控制实验力矩跟踪误差

    Table  4.   Torque tracking error of feedforward experiment

    是否添加舵机
    前馈控制器
    方法 最大跟踪
    误差/(N·m)
    误差率/%
    本文方法2.605.20
    迭代学习控制+PID控制6.7013.40
    引导信号迭代学习
    控制+PID控制
    5.4410.88
    迭代学习控制+RISE控制8.5717.14
    本文方法2.124.24
    迭代学习控制+PID控制6.4812.96
    引导信号迭代学习
    控制+PID控制
    5.2610.56
    迭代学习控制+RISE控制8.1516.30
    下载: 导出CSV
  • [1] 李成成, 王广林, 潘旭东, 等. 电动负载模拟器摩擦模型参数辨识方法[J]. 振动测试与诊断, 2020, 40(3): 519-525.

    LI C C, WANG G L, PAN X D, et al. Research on parameter identification method of friction model for electric load simulator[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(3): 519-525(in Chinese).
    [2] LIU H T, LIU H R, SHAN X L. Linear active disturbance rejection control with torque compensation for electric load simulator[J]. Journal of Power Electronics, 2021, 21(1): 195-203. doi: 10.1007/s43236-020-00168-7
    [3] 王超, 侯远龙, 王力, 等. 炮控系统电动负载模拟器性能影响因素分析[J]. 电机与控制学报, 2016, 20(12): 74-81.

    WANG C, HOU Y L, WANG L, et al. Influence analysis on electric load simulator for the gun control system[J]. Electric Machines and Control, 2016, 20(12): 74-81(in Chinese).
    [4] 税洋, 尉建利, 闫杰. 基于模型参考自适应控制的舵机加载系统研究[J]. 西北工业大学学报, 2018, 36(2): 246-251. doi: 10.3969/j.issn.1000-2758.2018.02.006

    SHUI Y, WEI J L, YAN J. Research on motor drive load simulator based on model reference adaptive control[J]. Journal of Northwestern Polytechnical University, 2018, 36(2): 246-251(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.02.006
    [5] FU Z, WANG S P, WANG X J. ESO-based adaptive robust force control of linear electric load simulator[C]//Proceedings of the CSAA/IET International Conference on Aircraft Utility Systems. London: IET, 2018: 1-6.
    [6] 林辉, 吕帅帅, 陈晓雷, 等. 导弹尾翼电动负载模拟器快速终端滑模控制[J]. 哈尔滨工业大学学报, 2017, 49(3): 22-28. doi: 10.11918/j.issn.0367-6234.2017.03.003

    LIN H, LU S S, CHEN X L, et al. Fast terminal sliding mode control for missile rudder electric dynamic load simulator systems[J]. Journal of Harbin Institute of Technology, 2017, 49(3): 22-28(in Chinese). doi: 10.11918/j.issn.0367-6234.2017.03.003
    [7] LUO C Y, YAO J Y, CHEN F H, et al. Adaptive repetitive control of hydraulic load simulator with RISE feedback[J]. IEEE Access, 2017, 5: 23901-23911. doi: 10.1109/ACCESS.2017.2762665
    [8] 刘晓琳, 姜梦馨. 基于WOA的飞机舵机电动加载系统双环复合控制研究[J]. 振动与冲击, 2021, 40(12): 246-253.

    LIU X L, JIANG M X. A study on double loop composite control based on WOA for an aircraft rudder electric loading system[J]. Journal of Vibration and Shock, 2021, 40(12): 246-253(in Chinese).
    [9] 郭行, 陈康, 孙力, 等. 一种引入位置比例控制提高电动负载模拟器性能的控制系统设计方法[J]. 西北工业大学学报, 2014, 32(2): 235-239. doi: 10.3969/j.issn.1000-2758.2014.02.015

    GUO H, CHEN K, SUN L, et al. An effective method for designing control system of motor-driven torque control simulator by introducing position proportional control[J]. Journal of Northwestern Polytechnical University, 2014, 32(2): 235-239(in Chinese). doi: 10.3969/j.issn.1000-2758.2014.02.015
    [10] 刘晓琳, 李卓. 飞机舵机电动加载系统多余力矩抑制方法[J]. 系统工程与电子技术, 2019, 41(6): 1366-1373. doi: 10.3969/j.issn.1001506X.2019.06.26

    LIU X L, LI Z. Method to restrain extra torque of aircraft rudderelectric loading system[J]. Systems Engineering and Electronics, 2019, 41(6): 1366-1373(in Chinese). doi: 10.3969/j.issn.1001506X.2019.06.26
    [11] HAN H T, YANG B. A CMAC based self-tuning intelligent PID controller for electric load simulator[C]//Proceedings of the 3rd International Conference on Instrumentation, Measurement, Computer, Communication and Control. Piscataway: IEEE Press, 2013: 1443-1448.
    [12] 潘卫东, 范元勋, 雷建杰, 等. 摩擦对电动直线负载模拟器的影响及其抑制研究[J]. 兵工学报, 2019, 40(10): 2050-2059. doi: 10.3969/j.issn.1000-1093.2019.10.010

    PAN W D, FAN Y X, LEI J J, et al. Effect of friction on electric linear load simulator and research on friction suppression[J]. Acta Armamentarii, 2019, 40(10): 2050-2059(in Chinese). doi: 10.3969/j.issn.1000-1093.2019.10.010
    [13] ZHANG M, YANG B. A naive method of applying fuzzy logic to CMAC in electric load simulator[J]. Transactions of the Institute of Measurement and Control, 2017, 39(10): 1590-1599. doi: 10.1177/0142331216659335
    [14] ULLAH N, KHAN W, WANG S P. High performance direct torque control of electrical aerodynamics load simulator using fractional calculus[J]. Acta Polytechnica Hungarica, 2014, 11(10): 59-78. doi: 10.12700/APH.11.10.2014.10.4
    [15] 代明光, 齐蓉. 基于扩展状态观测器的电动负载模拟器反演滑模控制[J]. 航空学报, 2020, 41(5): 323683.

    DAI M G, QI R. Backstepping sliding mode control of electric dynamic load simulator based on extended state observer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 323683(in Chinese).
    [16] 牛国臣, 王巍, 宗光华. 基于迭代学习的电动负载模拟器复合控制[J]. 控制理论与应用, 2014, 31(12): 1740-1747.

    NIU G C, WANG W, ZONG G H. Composite control for electric load simulator based on iterative learning[J]. Control Theory & Applications, 2014, 31(12): 1740-1747(in Chinese).
    [17] 黄静, 郑华义, 李宏, 等. 带参数学习的引导信号迭代学习控制方法[J]. 兵工学报, 2019, 40(11): 2363-2369. doi: 10.3969/j.issn.1000-1093.2019.11.021

    HUANG J, ZHENG H Y, LI H, et al. Guiding signal iterative learning control method with parameter learning[J]. Acta Armamentarii, 2019, 40(11): 2363-2369(in Chinese). doi: 10.3969/j.issn.1000-1093.2019.11.021
    [18] 代明光, 齐蓉. 具有控制时滞的电动加载系统迭代学习复合控制[J]. 北京航空航天大学学报, 2020, 46(2): 340-349.

    DAI M G, QI R. Composite iterative learning control for electric dynamic loading system with control time delay[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 340-349(in Chinese).
    [19] LI Z, MA X, LI Y B. Robust tracking control strategy for a quadrotor using RPD-SMC and RISE[J]. Neurocomputing, 2019, 331: 312-322. doi: 10.1016/j.neucom.2018.11.070
    [20] SU Z K, XIE M Y, LI C T. RISE based active vibration control for the flexible refueling hose[J]. Aerospace Science and Technology, 2019, 92: 387-404. doi: 10.1016/j.ast.2019.06.014
    [21] YAO Z K, YAO J Y, SUN W C. Adaptive RISE control of hydraulic systems with multilayer neural-networks[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8638-8647. doi: 10.1109/TIE.2018.2886773
    [22] HU C, GAO H B, GUO J H, et al. RISE-based integrated motion control of autonomous ground vehicles with asymptotic prescribed performance[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(9): 5336-5348. doi: 10.1109/TSMC.2019.2950468
    [23] YAO J Y, DENG W X, JIAO Z X. RISE-based adaptive control of hydraulic systems with asymptotic tracking[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(3): 1524-1531. doi: 10.1109/TASE.2015.2434393
    [24] 韩松杉, 焦宗夏, 尚耀星, 等. 基于舵机指令前馈的电液负载模拟器同步控制[J]. 北京航空航天大学学报, 2015, 41(1): 124-132.

    HAN S S, JIAO Z X, SHANG Y X, et al. Synchronizing compensation control of electro-hydraulic load simulator using command signal of actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 124-132(in Chinese).
    [25] 汪成文, 焦宗夏, 罗才瑾. 基于改进的速度同步控制的电液负载模拟器[J]. 航空学报, 2012, 33(9): 1717-1725.

    WANG C W, JIAO Z X, LUO C J. An improved velocity synchronization control on electro-hydraulic load simulator[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1717-1725(in Chinese).
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  755
  • HTML全文浏览量:  97
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-13
  • 录用日期:  2023-05-15
  • 网络出版日期:  2023-06-06
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答