留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双弯曲旋转超声椭圆振动加工系统设计

邵壮壮 郑侃 董松 孙振文 孙连军 严嘉文

邵壮壮,郑侃,董松,等. 双弯曲旋转超声椭圆振动加工系统设计[J]. 北京航空航天大学学报,2024,50(9):2912-2918 doi: 10.13700/j.bh.1001-5965.2022.0712
引用本文: 邵壮壮,郑侃,董松,等. 双弯曲旋转超声椭圆振动加工系统设计[J]. 北京航空航天大学学报,2024,50(9):2912-2918 doi: 10.13700/j.bh.1001-5965.2022.0712
SHAO Z Z,ZHENG K,DONG S,et al. Design of double bending rotary ultrasonic elliptical vibration machining system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2912-2918 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0712
Citation: SHAO Z Z,ZHENG K,DONG S,et al. Design of double bending rotary ultrasonic elliptical vibration machining system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2912-2918 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0712

双弯曲旋转超声椭圆振动加工系统设计

doi: 10.13700/j.bh.1001-5965.2022.0712
基金项目: 国家自然科学基金(52075265)
详细信息
    通讯作者:

    E-mail:zhengkan@njust.edu.cn

  • 中图分类号: TH161

Design of double bending rotary ultrasonic elliptical vibration machining system

Funds: National Natural Science Foundation of China (52075265)
More Information
  • 摘要:

    由于旋转超声单一振动模式加工效率提升有限,因此采用超声振动激励源耦合法设计了一种双弯曲旋转超声椭圆振动加工系统。推导弯曲波动方程,计算的弯曲超声振动系统参数与仿真结果的理论分析误差仅为5%。耦合双弯曲旋转超声椭圆振动加工系统2个不同方向的振动,控制弯振频率偏差低于1%。对超声刀柄的法兰位置与形状进行有限元分析发现,开设减振槽有利于增大弯振振幅,并确定了法兰的最佳位置。对双弯曲旋转超声椭圆振动加工系统的振动频率和振幅进行测试,结果表明:所设计系统在工作频率和2个方向的振幅均满足设计预期。

     

  • 图 1  超声振动加工系统原理

    Figure 1.  Principle of ultrasonic vibration machining system

    图 2  一组弯振压电陶瓷堆结构示意图

    Figure 2.  Structural diagram of a set of piezoelectric ceramic stack

    图 3  双弯曲旋转超声振动换能器椭圆振动工作原理

    Figure 3.  Working principle of elliptical vibration of double-bending rotary ultrasonic vibration transducer

    图 4  双弯曲变幅杆结构

    Figure 4.  Double bending horn structure

    图 5  无法兰超声系统模态云图

    Figure 5.  Modal cloud atlas of ultrasonic system with unmovable flange

    图 6  双弯曲旋转超声椭圆振动加工系统网格

    Figure 6.  Double-bending rotary ultrasonic elliptical vibration machining system grid

    图 7  双弯曲旋转超声椭圆振动加工系统振型云图

    Figure 7.  Modal cloud atlas of dual-bending rotary ultrasonic elliptical vibration machining system

    图 8  法兰位置与振幅关系

    Figure 8.  Relationship between flange position and amplitude

    图 9  双弯曲旋转超声椭圆振动加工系统弯曲振幅

    Figure 9.  Bending amplitude of double bending rotary ultrasonic elliptical vibration machining system

    图 10  阻抗分析

    Figure 10.  Impedance analysis

    图 11  xy方向的振动幅值测量及结果

    Figure 11.  Vibration amplitude measurement and results in different directions

    图 12  不同方向的电压与振幅关系

    Figure 12.  Relationship between voltage and amplitude in different directions

    表  1  材料属性

    Table  1.   Material properties

    材料 密度/(kg·m−3) 杨氏模量/GPa 泊松比
    45#钢 7850 208 0.28
    PZT-8 7650 90 0.3
    下载: 导出CSV

    表  2  超声振动系统各零件有限元分析材料属性

    Table  2.   Material properties of ultrasonic vibration system by finite element analysis

    零件 材料 密度/(kg·m3) 弹性模量/Pa 泊松比
    后盖板 45#钢 7800 2.08×1011 0.28
    前盖板 45#钢 7800 2.08×1011 0.28
    压电陶瓷 PZT-8 7800 8.2×1010 0.29
    预紧螺栓 40cr 7900 2.14×1011 0.3
    刀具 硬质合金YG8 14000 1.9×1011 0.3
    下载: 导出CSV

    表  3  双弯曲旋转超声椭圆振动加工系统弯曲频率

    Table  3.   Bending frequency of double bending rotary ultrasonic elliptical vibration machining system

    法兰
    距离/mm
    x方向自
    由频率/Hz
    y方向自
    由频率/Hz
    x方向固
    定频率/Hz
    y方向固
    定频率/Hz
    14 22410 22414 23480 23528
    14.5 22301 22405 23619 23569
    15 22596 22693 23535 23574
    15.5 22281 22385 23761 23812
    16 22269 22375 23856 23914
    下载: 导出CSV
  • [1] 郑侃, 廖文和, 孙连军, 等. 机器人纵振与纵扭超声铣削稳定性对比研究[J]. 机械工程学报, 2021, 57(7): 10-17. doi: 10.3901/JME.2021.07.010

    ZHENG K, LIAO W H, SUN L J, et al. Comparative study on stability of robotic longitudinal vibration and longitudinal-torsional ultrasonic milling[J]. Journal of Mechanical Engineering, 2021, 57(7): 10-17(in Chinese). doi: 10.3901/JME.2021.07.010
    [2] 廖文和, 郑侃, 孙连军, 等. 大型复杂构件机器人加工稳定性研究进展[J]. 航空学报, 2022, 43(1): 026061.

    LIAO W H, ZHENG K, DONG S, et al. Burr characteristics of robotic rotary ultrasonic drilling aluminum alloy stacked components[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 026061(in Chinese).
    [3] 胡力闯, 郑侃, 董松, 等. 机器人旋转超声钻削铝合金叠层构件毛刺特性[J]. 北京航空航天大学学报, 2020, 46(2): 164-183.

    HU L C, ZHEN K, DONG S, et al. Burr characteristics of robotic rotary ultrasonic drilling aluminum alloy stacked components[J]. Journal of Beijing University of Aeronautics and Astronantics, 2020, 46(2): 164-183(in Chinese).
    [4] YANG Z C, ZHU L D, ZHANG G X, et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103594. doi: 10.1016/j.ijmachtools.2020.103594
    [5] SHU J, LIAO W H, ZHENG K, et al. Effect of rotary ultrasonic machining on surface structure and ablation resistance of C/C composite[J]. Ceramics International, 2022, 48(13): 18246-18256. doi: 10.1016/j.ceramint.2022.03.083
    [6] XUE F, ZHENG K, LIAO W H, et al. Investigation on fiber fracture mechanism of c/sic composites by rotary ultrasonic milling[J]. International Journal of Mechanical Sciences, 2021, 191: 106054. doi: 10.1016/j.ijmecsci.2020.106054
    [7] ZHANG M L, ZHANG D Y, GENG D X, et al. Effects of tool vibration on surface integrity in rotary ultrasonic elliptical end milling of Ti–6Al–4V[J]. Journal of Alloys and Compounds, 2020, 821: 153266. doi: 10.1016/j.jallcom.2019.153266
    [8] 张德远, 彭振龙, 耿大喜, 等. 高效低损伤高速波动式超声加工技术进展[J]. 航空制造技术, 2022, 65(8): 22-33.

    ZHANG D Y, PENG Z L, GENG D X, et al. Development of high-speed wave-motion ultrasonic machining technology with high efficiency and low damage[J]. Aeronautical Manufacturing Technology, 2022, 65(8): 22-33(in Chinese).
    [9] 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报, 2022, 43(4): 525587. doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204007

    PENG Z L, ZHANG X Y, ZHANG D Y. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525587(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.4.hkxb202204007
    [10] 高泽, 张德远, 李哲, 等. 高速超声椭圆振动铣削腹板表面质量研究[J]. 机械工程学报, 2019, 55(7): 249-256. doi: 10.3901/JME.2019.07.249

    GAO Z, ZHANG D Y, LI Z, et al. Research on surface quality of titanium alloy webs via high-speed ultrasonic elliptical vibration milling[J]. Journal of Mechanical Engineering, 2019, 55(7): 249-256(in Chinese). doi: 10.3901/JME.2019.07.249
    [11] 刘佳佳, 姜兴刚, 高泽, 等. 高速旋转超声椭圆振动侧铣削振幅对钛合金表面完整性影响的研究[J]. 机械工程学报, 2019, 55(11): 215-223. doi: 10.3901/JME.2019.11.215

    LIU J J, JIANG X G, GAO Z, et al. Investigation of the effect of vibration amplitude on the surface integrity in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V[J]. Journal of Mechanical Engineering, 2019, 55(11): 215-223(in Chinese). doi: 10.3901/JME.2019.11.215
    [12] GAO J, ALTINTAS Y. Chatter stability of synchronized elliptical vibration assisted milling[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 28: 76-86. doi: 10.1016/j.cirpj.2019.11.006
    [13] LU H, ZHU L D, YANG Z C, et al. Research on the generation mechanism and interference of surface texture in ultrasonic vibration assisted milling[J]. International Journal of Mechanical Sciences, 2021, 208: 106681. doi: 10.1016/j.ijmecsci.2021.106681
    [14] WANG H, PEI Z J, CONG W L. A feeding-directional cutting force model for end surface grinding of CFRP composites using rotary ultrasonic machining with elliptical ultrasonic vibration[J]. International Journal of Machine Tools and Manufacture, 2020, 152: 103540. doi: 10.1016/j.ijmachtools.2020.103540
    [15] PANG Y, FENG P F, ZHANG J F, et al. Frequency coupling design of ultrasonic horn with spiral slots and performance analysis of longitudinal-torsional machining characteristics[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9): 4093-4103.
    [16] CHEN P, TONG J L, ZHAO J S, et al. A study ofthe surface microstructure and tool wear of titanium alloys after ultrasonic longitudinal-torsional milling[J]. Journal of Manufacturing Processes, 2020, 53: 1-11. doi: 10.1016/j.jmapro.2020.01.040
    [17] 顾磊, 郑侃, 董松. 纵扭共振旋转超声加工系统设计[J]. 南京理工大学学报, 2020, 44(2): 127-133.

    GU L, ZHENG K, DONG S. Design of miniature longitudinal-torsional ultrasonic machining system[J]. Journal of Nanjing University of Science and Technology, 2020, 44(2): 127-133(in Chinese).
    [18] WANG J J, LIAO W H, GUO P. Modulated ultrasonic elliptical vibration cutting for ductile-regime texturing of brittle materials with 2-D combined resonant and non-resonant vibrations[J]. International Journal of Mechanical Sciences, 2020, 170: 105347. doi: 10.1016/j.ijmecsci.2019.105347
    [19] BAI W, WANG K, DU D X, et al. Design of an ultrasonic elliptical vibration device with two stationary points for ultra-precision cutting[J]. Ultrasonics, 2022, 120: 106662. doi: 10.1016/j.ultras.2021.106662
    [20] DU P F, HAN L, QIU X, et al. Development of a high-precision piezoelectric ultrasonic milling tool using longitudinal-bending hybrid transducer[J]. International Journal of Mechanical Sciences, 2022, 222: 107239. doi: 10.1016/j.ijmecsci.2022.107239
    [21] 王晓雪, 张臣, 王生才. 纵弯椭圆振动辅助钻削装置的设计与优化研究[J]. 航空制造技术, 2020, 63(12): 70-79.

    WANG X X, ZHANG C, WANG S C. Design and optimization of longitude-bend complex mode elliptical vibration assisted drilling device[J]. Aeronautical Manufacturing Technology, 2020, 63(12): 70-79(in Chinese).
    [22] 张若愚. 用于旋转超声加工的半波谐振超声振子设计及实验研究[D]. 杭州: 浙江大学, 2020: 50-51.

    ZHANG R Y. Design and experimental study of half-wave resonant ultrasonic oscillator for rotary ultrasonic machining[D]. Hangzhou: Zhejiang University, 2020: 50-51(in Chinese).
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  119
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-13
  • 录用日期:  2022-10-07
  • 网络出版日期:  2023-01-06
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答