留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柱塞泵配流盘卸荷槽开度对瞬态流场特征影响

刘珊珊 雷欣瑞 宋字宇 杨凯 黄家海

刘珊珊,雷欣瑞,宋字宇,等. 柱塞泵配流盘卸荷槽开度对瞬态流场特征影响[J]. 北京航空航天大学学报,2024,50(9):2919-2929 doi: 10.13700/j.bh.1001-5965.2022.0713
引用本文: 刘珊珊,雷欣瑞,宋字宇,等. 柱塞泵配流盘卸荷槽开度对瞬态流场特征影响[J]. 北京航空航天大学学报,2024,50(9):2919-2929 doi: 10.13700/j.bh.1001-5965.2022.0713
LIU S S,LEI X R,SONG Z Y,et al. Influence of unloading groove opening of port plate of plunger pumps on transient flow field characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2919-2929 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0713
Citation: LIU S S,LEI X R,SONG Z Y,et al. Influence of unloading groove opening of port plate of plunger pumps on transient flow field characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2919-2929 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0713

柱塞泵配流盘卸荷槽开度对瞬态流场特征影响

doi: 10.13700/j.bh.1001-5965.2022.0713
基金项目: 国家重点研发计划(2021YFB2011903)
详细信息
    通讯作者:

    E-mail:huangjiahai@tyut.edu.cn

  • 中图分类号: TH137.5

Influence of unloading groove opening of port plate of plunger pumps on transient flow field characteristics

Funds: National Key Research and Development Program of China (2021YFB2011903)
More Information
  • 摘要:

    空化是影响轴向柱塞泵性能的关键因素,柱塞缸体表面损坏是一种常见的失效形式,但目前成因尚不清晰。建立柱塞泵三维流场仿真模型,设计可观察单个柱塞腔与卸荷槽导通状态下流场特征的实验装置,并采用流体仿真和流场可视化测量的方法揭示了其成因。研究结果表明:射流角随卸荷槽开度的增大而增大,并伴随漩涡的产生与消失,射流中心速度大于20 m/s时漩涡产生;柱塞腔与卸荷槽由导通至完全截止的转变过程中,射流角由0°逐渐增大至60°,当射流角由0°向20°变化时,射流方向主要集中于柱塞缸体与配流盘腰型槽接触的表面处,导致柱塞缸体表面和配流盘吸油腰型槽上部产生射流破坏和气蚀破坏;当射流角由20°向60°变化时,射流方向将向配流盘腰型槽内部扩展,导致配流盘破坏区域由上部移向内部。上述研究结果有助于厘清柱塞缸体摩擦表面气蚀成因,为配流盘结构优化设计提供了约束条件,对提升柱塞泵的综合性能也有重要意义。

     

  • 图 1  斜盘式轴向柱塞泵示意

    Figure 1.  Swash plate axial plunger pump

    图 2  配流盘结构示意

    Figure 2.  Port plate structure

    图 3  计算域网格

    Figure 3.  Computational domain grid

    图 4  可视化观测的实验装置

    Figure 4.  Experimental device for visual observation

    图 5  卸荷槽的压力脉动

    Figure 5.  Pressure pulsation of unloading groove

    图 6  总压周期

    Figure 6.  Total pressure period

    图 7  静压周期

    Figure 7.  Static pressure period

    图 8  气体体积分数周期

    Figure 8.  Gas volume fraction period

    图 9  漩涡周期

    Figure 9.  Vortex period

    图 10  可视化过程

    Figure 10.  Visualization process

    图 11  切面射流角速度云图

    Figure 11.  Angular velocity nephogram of jet in section

    图 12  不同开度下的可视化

    Figure 12.  Visualization under different openings

    图 13  侵蚀区域实物照片

    Figure 13.  Photos of cavitation damage area

    图 14  侵蚀区域

    Figure 14.  Cavitation damage area

    表  1  网格敏感性

    Table  1.   Grid sensitivity

    组别 关键边界
    角度
    曲率
    分辨率
    最大
    单元格
    边界单元格
    尺寸
    网格数目 $ \Delta $Q/%
    1 30 35 0.03 0.015 188105 7.13
    2 30 35 0.025 0.0125 214750 4.76
    3 30 35 0.02 0.01 225204 2.26
    4 25 30 0.02 0.01 232352 1.42
    5 15 20 0.02 0.01 367691 1.12
    6 15 20 0.02 0.005 518554 0.97
    7 15 20 0.01 0.005 897371 0.98
    下载: 导出CSV

    表  2  柱塞泵内流态情况

    Table  2.   Flow pattern in plunger pump

    位置 雷诺数 流态
    柱塞泵吸油口 $ {{Re}} = \dfrac{{v{d_{{\mathrm{in}}}}}}{\upsilon } = \dfrac{{1.415 \times {{10}^{ - 3}} \times 75}}{{46 \times {{10}^{ - 6}}}} \approx 2\;307 < 2\;320 $ 层流
    柱塞泵排油口 $ {{Re}} = \dfrac{{v{d_{{\mathrm{out}}}}}}{\upsilon } = \dfrac{{{\text{3}}{\text{.4}} \times {{10}^{ - 3}} \times {\text{40}}}}{{46 \times {{10}^{ - 6}}}} \approx { {2\;957 > }}2\;320 $ 湍流
    三角槽处 $ {{Re}} = \dfrac{{4v{{{R}}_{{{\mathrm{H}}}}}}}{\upsilon } = \dfrac{{{\text{4}} \times 186 \times {{10}^{ - 3}} \times 0.481}}{{46 \times {{10}^{ - 6}}}} \approx 7\;780{ { > }}2\;320 $ 湍流
    柱塞腔内 $ {{Re}} = \dfrac{{v{d_{{\mathrm{pis}}}}}}{\upsilon } = \dfrac{{{\text{10}} \times {{10}^{ - 3}} \times {\text{31}}}}{{46 \times {{10}^{ - 6}}}} \approx { {6\;739 > }}2\;320 $ 湍流
    下载: 导出CSV

    表  3  仿真参数的设置

    Table  3.   Settings of simulation parameters

    斜盘
    倾角/(°)
    工作
    压力/MPa
    油膜泄漏
    压力/MPa
    球面副
    曲率
    半径/mm
    液压油密
    度/(kg·m−3)
    空气分
    离压/
    MPa
    饱和
    蒸汽压/
    MPa
    动力
    黏度/(Pa·s)
    额定转速/
    (r·min−1)
    体积
    弹性
    模量/MPa
    入口
    压力/MPa
    饱和
    压力/MPa
    空化蒸汽
    系数
    冷凝
    系数
    工作
    温度/K
    15 35 2 396±0.3 865 0.004 0.0035 0.03979 1500 1.5×103 0.1 0.04 0.02 0.01 313
    下载: 导出CSV
  • [1] CHAO Q, XU Z, TAO J F, et al. Cavitation in a high-speed aviation axial piston pump over a wide range of fluid temperatures[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236(4): 727-737. doi: 10.1177/09576509211046998
    [2] CHAO Q, ZHANG J H, XU B, et al. Effects of inclined cylinder ports on gaseous cavitation of high-speed electro-hydrostatic actuator pumps: a numerical study[J]. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1): 245-253. doi: 10.1080/19942060.2019.1576545
    [3] GULLAPALLI S, MICHAEL P, KENSLER J, et al. An investigation of hydraulic fluid composition and aeration in an axial piston pump[C]//Proceedings of the ASME/BATH Symposium on Fluid Power and Motion Control. Sarasota: American Society of Mechanical Engineers, 2017: 4259.
    [4] ZHAO B, GUO W W, QUAN L. Cavitation of a submerged jet at the spherical valve plate/cylinder block interface for axial piston pump[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 67. doi: 10.1186/s10033-020-00486-8
    [5] HARRIS R M, EDGE K A, TILLEY D G. The suction dynamics of positive displacement axial piston pumps[J]. Journal of Dynamic Systems, Measurement, and Control, 1994, 116(2): 281-287. doi: 10.1115/1.2899221
    [6] SINGHAL A K, ATHAVALE M M, LI H Y, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624. doi: 10.1115/1.1486223
    [7] 苑士华, 周俊杰, 罗先伟, 等. 轴向柱塞泵空化时气相动态演进过程及影响[J]. 兵工学报, 2015, 36(3): 559-565. doi: 10.3969/j.issn.1000-1093.2015.03.026

    YUAN S H, ZHOU J J, LUO X W, et al. Dynamic evolution and effects of gas phase in cavitation of axial piston pump[J]. Acta Armamentarii, 2015, 36(3): 559-565(in Chinese). doi: 10.3969/j.issn.1000-1093.2015.03.026
    [8] 潮群. EHA轴向柱塞泵高速化若干关键技术研究[D]. 杭州: 浙江大学, 2019.

    CHAO Q. Research on some key technologies of EHA axial piston pump with high speed[D]. Hangzhou: Zhejiang University, 2019(in Chinese).
    [9] PENG K W, TIAN S C, LI G S, et al. Bubble dynamics characteristics and influencing factors on the cavitation collapse intensity for self-resonating cavitating jets[J]. Petroleum Exploration and Development, 2018, 45(2): 343-350. doi: 10.1016/S1876-3804(18)30038-7
    [10] LIANG J, LUO X H, LIU Y S, et al. A numerical investigation in effects of inlet pressure fluctuations on the flow and cavitation characteristics inside water hydraulic poppet valves[J]. International Journal of Heat and Mass Transfer, 2016, 103: 684-700. doi: 10.1016/j.ijheatmasstransfer.2016.07.112
    [11] SHEN X, ZHANG D S, XU B, et al. Comparative study of tip leakage vortex trajectory and cavitation in an axial flow pump with various tip clearances[J]. Journal of Mechanical Science and Technology, 2022, 36(3): 1289-1302. doi: 10.1007/s12206-022-0219-2
    [12] CHO I S. A study on the optimum design for the valve plate of a swash plate-type oil hydraulic piston pump[J]. Journal of Mechanical Science and Technology, 2015, 29(6): 2409-2413. doi: 10.1007/s12206-015-0533-z
    [13] GIOVANNESCHI P, DUFRESNE D. Experimental study of laser-induced cavitation bubbles[J]. Journal of Applied Physics, 1985, 58(2): 651-652. doi: 10.1063/1.336204
    [14] AKHATOV I, LINDAU O, TOPOLNIKOV A, et al. Collapse and rebound of a laser-induced cavitation bubble[J]. Physics of Fluids, 2001, 13(10): 2805-2819. doi: 10.1063/1.1401810
    [15] BRUJAN E A, KEEN G S, VOGEL A, et al. The final stage of the collapse of a cavitation bubble close to a rigid boundary[J]. Physics of Fluids, 2002, 14(1): 85-92. doi: 10.1063/1.1421102
    [16] ROBINSON P B, BLAKE J R, KODAMA T, et al. Interaction of cavitation bubbles with a free surface[J]. Journal of Applied Physics, 2001, 89(12): 8225-8237. doi: 10.1063/1.1368163
    [17] ZHANG Y, DONG Z, HU X. Cavitation limiting strategies for pumping system: US, 20180040226A1[P]. 2018-02-08.
    [18] 郭伟伟. 轴向柱塞泵淹没空化射流特征研究[D]. 太原: 太原理工大学, 2020.

    GUO W W. Study on characteristics of submerged cavitation jet in axial piston pump[D]. Taiyuan: Taiyuan University of Technology, 2020(in Chinese).
    [19] 築地徹浩, 陈卓, 陈晶晶. 轴向柱塞泵内部空化流的可视化分析[J]. 液压与气动, 2015(2): 1-7. doi: 10.11832/j.issn.1000-4858.2015.02.001

    Tetsuhiro T, CHEN Z, CHEN J J. Visualized analysis of cavitation inside axial piston pump[J]. Chinese Hydraulics & Pneumatics, 2015(2): 1-7(in Chinese). doi: 10.11832/j.issn.1000-4858.2015.02.001
    [20] YAMAGUCHI A, TAKABE T. Cavitation in an axial piston pump[J]. Bulletin of JSME, 1983, 26(211): 72-78. doi: 10.1299/jsme1958.26.72
    [21] ITO K, INOUE K, SAITO K. Visualization and detection of cavitation in v-shaped groove type valve plate of an axial piston pump[J]. Proceedings of the JFPS International Symposium on Fluid Power, 1996, 1996(3): 67-72. doi: 10.5739/isfp.1996.67
    [22] QI G N, TIAN T, HE Z Q, et al. Cavitation phenomenon of high-pressure piston pump and control[J]. Machine Tool & Hydraulics, 2021, 49(9): 187-191.
    [23] LIU W, WANG A L, SHAN X W, et al. Valve plate for piston pump cavitation problem with the damp groove structural optimization[J]. Applied Mechanics and Materials, 2014, 543-547: 154-157. doi: 10.4028/www.scientific.net/AMM.543-547.154
    [24] KOLLEK W, KUDŹMA Z, STOSIAK M, et al. Possibilities of diagnosing cavitation in hydraulic systems[J]. Archives of Civil and Mechanical Engineering, 2007, 7(1): 61-73. doi: 10.1016/S1644-9665(12)60005-3
    [25] GB/T 265-1988,石油产品运动粘度测定法和动力粘度计算法[S]. 北京:中国标准出版社,1990.

    GB/T 265-1988, Petroleum products-determination of kinematic viscosity and calculation of dynamic viscosity[S]. Beijing: Standards Press of China, 1990(in Chinese).
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  108
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-13
  • 录用日期:  2022-11-09
  • 网络出版日期:  2022-11-24
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答