Adequacy and suitability of airworthiness clause of bird strike based on bird situation in China
-
摘要:
以中国民航近十余年运输类飞机鸟撞信息为数据源,利用混合威布尔函数拟合鸟撞能量分布,并应用列文伯格-马夸尔特(L-M)寻优算法得到更为精确的拟合分布参数估计值。对照安全性指标,通过鸟撞能量分布函数评估出现有鸟撞适航条款对机翼而言是具有充分性和适宜性的,对尾翼而言具有充分性但过于保守。以发生灾难性事故的安全性指标为依据,中国鸟情环境下机翼结构抗鸟撞鸟体质量最低适航要求为1.218 kg;同时验证了美国联邦航空局(FAA)在美国鸟情环境下提高机翼结构抗鸟撞鸟体质量最低适航要求的愿景(约3.6 kg),证明了基于两重两参数混合威布尔分布的鸟撞冲击能量统计分析方法的有效性及结果的可信度,为中国民航自主修订相关适航条款修订提供了理论依据和实践参考。
Abstract:Based on the data source of bird strike information of airplanes in transportation category from civil aviation of China in recent ten years, the mixed Weibull function was used to fit the bird strike energy distribution, and a Levenberg-Marquardt (L-M) optimization algorithm was applied to obtain more accurate estimations of fitted distribution parameters. Based on the safety index, it was sufficient and appropriate for the wing to evaluate the existing airworthiness clauses of bird strike by the bird strike energy distribution function. However, it was sufficient but too conservative for the tail. According to the safety index of catastrophic accidents, the minimum bird weight meeting the airworthiness requirement of the wing against bird strike under the bird situation in China was 1.218 kg. At the same time, the vision was verified that Federal Aviation Administration (FAA) would increase the minimum airworthiness requirement of the wing against bird strike to 3.6 kg under the bird situation in America, which partially demonstrated the validity of the methods and reliability of the results and provided a theoretical basis and practical reference for the independent revision of relevant airworthiness clauses of civil aviation of China.
-
Key words:
- bird situation /
- airworthiness clause /
- bird strike energy distribution /
- evaluation /
- adequacy /
- suitability /
- safety index
-
表 1 2种拟合分布函数的参数估计结果
Table 1. Parameter estimation values of two fitting distribution functions
估计参数 $ {p_1} $ $ {\eta} $ $ {\beta} $ 两重两参数混合
威布尔分布0.3464 2204.6852 (η1)1 (β1) 127.3463 (η2)1 (β2) 一般两参数
威布尔分布542.0987 0.6011 注:η1,η2为η的两重参数;β1,β2为β的两重参数。 表 2 2种拟合分布函数的拟合优度对比
Table 2. Comparison of goodness of fit of two fitting functions
拟合优度评估指标 残差平方和SSE 均方差RMSE 判定系数R2 两重两参数混合
威布尔分布1.6133 0.0413 0.9579 一般两参数
威布尔分布6.0745 0.0802 0.9068 -
[1] Federal Aviation Administration, Department of Transportation of U. S. Part 25—Airworthiness standards: Transport category airplanes [S/OL] . Washington, D. C. : Federal Aviation Administration, (2024-05-01)[2024-05-23]. https://www.govinfo.gov/content/pkg/CFR-2023-title14-vol1/pdf/CFR-2023-title14-vol1-part25.pdf. [2] European Aviation Safety Agency. Certification specifications and acceptable means of compliance for large aeroplanes CS-25: Amendment 19[S]. Brussels: European Aviation Safety Agency, 2017: 1-C-26-1-C-28+1-D-6. [3] ANDREW H K. Submittal of results of harmonization effort on FAR/JAR §25.631, birdstrike: L350-03-114, version 2[R]. Washington, D. C. : Aviation Rulemaking Advisory Committee of FAA, 2003: 11-32. [4] 中国民用航空局政策法规司. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2016: 69-71.Policy and Regulation Department, Civil Aviation Administration of China. Airworthiness standards of transport category airplanes CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2016: 69-71(in Chinese). [5] Federal Aviation Administration, Department of Transportation of U. S. Bird strike requirements for transport category airplanes: FAA–2015–2490[S]. Washington D. C. : Federal Aviation Administration, 2015: 63877-63878. [6] COLÓN M R, LONG A M. Strike hazard posed by columbids to military aircraft[J]. Human-Wildlife Interactions, 2018, 12(2): 198-211. [7] PFEIFFER M B, BLACKWELL B F, DEVAULT T L, et al. Quantification of avian hazards to military aircraft and implications for wildlife management[J]. Public Library of Science One, 2018, 13(11): 1-16. [8] 熊明兰, 王华伟, 徐怡, 等. 基于鸟击事故征候预测的通用航空安全研究[J]. 系统工程与电子技术, 2020, 42(9): 2033-2040.XIONG M L, WANG H W, XU Y, et al. General aviation safety research based on prediction of bird strike symptom[J]. Systems Engineering and Electronics, 2020, 42(9): 2033-2040(in Chinese). [9] 陈唯实, 万健, 李敬. 基于机场探鸟雷达数据的鸟击风险评估[J]. 北京航空航天大学学报, 2013, 39(11): 1431-1436.CHEN W S, WAN J, LI J. Bird strike risk assessment with airport avian radar data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1431-1436(in Chinese). [10] 郑江萍. 鸟击风险分布及风险评估研究[D]. 天津: 中国民航大学, 2014: 38-43.ZHENG J P. Study on risk distribution and assessment of bird strike[D]. Tianjin: Civil Aviation University of China, 2014: 38-43(in Chinese). [11] 朱贝蓓, 蔡景. 基于MCMC方法的运输类飞机鸟撞冲击能量研究[J]. 航空计算技术, 2017, 47(1): 94-96.ZHU B B, CAI J. Study on impact energy of bird strike of transport aircraft based on MCMC method[J]. Aeronautical Computing Technique, 2017, 47(1): 94-96(in Chinese). [12] SARKHEIL H, TALAEIAN ERAGHI M, VATAN KHAH S. Hazard identification and risk modeling on runway bird strikes at Sardar-e-Jangal International Airport of Iran[J]. Modeling Earth Systems and Environment, 2021, 7(4): 2589-2598. doi: 10.1007/s40808-020-01032-0 [13] 陈琨, 解江, 裴惠, 等. 明胶鸟弹撞击复合材料蜂窝夹芯板试验[J]. 复合材料学报, 2020, 37(2): 328-335.CHEN K, XIE J, PEI H, et al. Experiment of composite honeycomb sandwich panels subjected to gelatin bird impact[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 328-335(in Chinese). [14] LONG S C, MU X L, LIU Y H, et al. Failure modeling of composite wing leading edge under bird strike[J]. Composite Structures, 2021, 255: 113005. doi: 10.1016/j.compstruct.2020.113005 [15] 朱海龙. 民用飞机液压系统防鸟撞适航符合性评估[J]. 液压气动与密封, 2021, 41(10): 67-70.ZHU H L. CivilAircraft hydraulic system airworthiness compliance assessment for bird bird impact[J]. Hydraulics Pneumatics & Seals, 2021, 41(10): 67-70(in Chinese). [16] KIM D H, KIM S W. Evaluation of bird strike-induced damages of helicopter composite fuel tank assembly based on fluid-structure interaction analysis[J]. Composite Structures, 2019, 210: 676-686. doi: 10.1016/j.compstruct.2018.11.086 [17] 顾晨轩, 苏艳, 王辉. 国内外运输类飞机鸟撞适航条款及其修订背景研究分析[J]. 科技创新导报, 2017, 14(7): 247-249.GU C X, SU Y, WANG H. Research and analysis on airworthiness clause of bird impact of transport aircraft at home and abroad and its revision background[J]. Science and Technology Innovation Herald, 2017, 14(7): 247-249(in Chinese). [18] 罗刚, 张海洋, 吴春波, 等. 航空发动机吞鸟与鸟撞飞机适航通用分析方法[J]. 航空发动机, 2019, 45(6): 90-96.LUO G, ZHANG H Y, WU C B, et al. General airworthiness analysis method of aeroengine bird ingestion and aircraft bird impact[J]. Aeroengine, 2019, 45(6): 90-96(in Chinese). [19] SUZANNE M. Bird strike requirements for transport category airplane- compliance by analysis[R]. Washington, D. C. : FAA, 2016: 1-15. [20] ASTM Subcommittee on Transparent Enclosures. Standard test method for bird impact testing of aerospace transparent enclosure: F330-21[S]. West Conshohochen: ASTM International, 2021: 1-5. [21] 王立, 孙秀清, 张春明, 等. 一种全天时星跟踪器相对惯导的安装阵在线快速估计方法[J]. 航空学报, 2020, 41(8): 624117.WANG L, SUN X Q, ZHANG C M, et al. Fast online estimation method for installing matrix between all-time star tracker and inertial navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 624117(in Chinese). [22] 中国民用航空局机场司和中国民航科学技术研究院. 2015年度中国民航鸟击信息分析报告[R]. 北京: 中国民用航空局, 2015: 1-24.Airport Department of Civil Aviation Administration of China and China Academy of Civil Aviation Science and Technology. Civil aviation bird strike aircraft information analysis report of civil aviation of China in 2015[R]. Beijing: Civil Aviation Administration of China, 2015: 1-24(in Chinese). [23] Society of Automotive Engineers. Guidelines and methods for conducting the safety assessment process on civil airborne system and equipment: ARP 4761[S]. Detroit: SAE International, 1996: 102-103. [24] RICHARD A D, MICHAEL J B, PHYLLIS R M, et al. Wildlife strikes to civil aircraft in the United States, 1990–2019[R]. Washington D. C. : Federal Aviation AdministrationNational Wildlife Strike Database, 2021: 2-31 .