留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于到达时间间隔差的ADS-B位置消息验证方法

刘海涛 刘家祥 李冬霞 王磊

刘海涛,刘家祥,李冬霞,等. 基于到达时间间隔差的ADS-B位置消息验证方法[J]. 北京航空航天大学学报,2024,50(9):2696-2703 doi: 10.13700/j.bh.1001-5965.2022.0729
引用本文: 刘海涛,刘家祥,李冬霞,等. 基于到达时间间隔差的ADS-B位置消息验证方法[J]. 北京航空航天大学学报,2024,50(9):2696-2703 doi: 10.13700/j.bh.1001-5965.2022.0729
LIU H T,LIU J X,LI D X,et al. Verification scheme of position message for automatic dependent surveillance-broadcast system based on interval difference of arrival[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2696-2703 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0729
Citation: LIU H T,LIU J X,LI D X,et al. Verification scheme of position message for automatic dependent surveillance-broadcast system based on interval difference of arrival[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2696-2703 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0729

基于到达时间间隔差的ADS-B位置消息验证方法

doi: 10.13700/j.bh.1001-5965.2022.0729
基金项目: 国家重点研发计划(2016YFB0502402);国家自然科学基金(U1733120);天津市多元投入基金项目青年项目(21JCQNJC00770)
详细信息
    通讯作者:

    E-mail:htliucauc@qq.com

  • 中图分类号: TN925

Verification scheme of position message for automatic dependent surveillance-broadcast system based on interval difference of arrival

Funds: National Key Research and Development Program of China (2016YFB0502402); National Natural Science Foundation of China (U1733120); Multiple Input Foundation Youth Project of Tianjin in China (21JCQNJC00770)
More Information
  • 摘要:

    广播式自动相关监视(ADS-B)是一种新型的航空器监视技术,具有定位精度高、更新速度快及覆盖范围广等优势,在民用航空监视领域获得广泛应用。由于ADS-B消息以广播方式传输,未采用加密与认证机制,ADS-B系统易受外部欺骗源的干扰。为解决该问题,提出了一种基于到达时间间隔差(IDOA)的ADS-B位置消息验证方法。建立基于IDOA的ADS-B位置消息验证系统模型,理论分析给出检验统计量的表达式及其统计特性,进一步分析给出检测门限的确定方法,通过仿真验证所提方法的正确性与有效性。结果表明:所提方法与基于到达时间差(TDOA)的验证方法具有相同的检测性能,且对时间测量误差和ADS-B位置误差不敏感,但所提方法可克服基于TDOA的验证方法存在的对地面站时间同步误差敏感的缺点。

     

  • 图 1  基于IDOA的ADS-B位置消息验证系统模型

    Figure 1.  ADS-B position verification system model based on IDOA

    图 2  仿真场景下$ {\Delta }{T}_{AB} $·c与仿真时间的关系曲线

    Figure 2.  Relationship curve between ${\Delta }{T}_{AB} $·c and simulation time in simulation scenario

    图 3  2个地面站位置关系及航迹示意图

    Figure 3.  Position relationship between two ground stations and flight path diagram

    图 4  检验统计量J的分布直方图

    Figure 4.  Histogram of distribution of test statistic J

    图 5  2个地面站与欺骗源位置关系及航迹示意图

    Figure 5.  Position relationship between two ground stations and spoofing source and flight path diagram

    图 6  地面站时间同步误差对TDOA与IDOA检测性能的影响

    Figure 6.  Influence of time synchronization error of ground station on detection performance of TDOA and IDOA

    图 7  时间测量误差对TDOA与IDOA检测性能的影响

    Figure 7.  Influence of time measurement error on detection performance of TDOA and IDOA

    图 8  ADS-B水平位置误差对TDOA与IDOA检测性能的影响

    Figure 8.  Influence of horizontal position error of ADS-B on detection performance of TDOA and IDOA

    图 9  ADS-B垂直位置误差对TDOA与IDOA检测性能的影响

    Figure 9.  Influence of vertical position error of ADS-B on detection performance of TDOA and IDOA

    航空器播发第i条和第i+1条位置消息时各节点时间示意图

    Time diagram of each node when aircraft transmits position message of Article i and Article i +1

    表  1  仿真参数设置

    Table  1.   Simulation parameter setting

    参数 数值
    地面站A的位置坐标/km (140,140,0)
    地面站B的位置坐标/km (40,40,0)
    静止欺骗源SC的位置坐标/km (157.68,4.67,0)
    航空器AV的航迹 随机生成900条航迹
    时间测量误差的标准差/s 6.4×10−9
    地面站时间同步误差/s 2×10−8
    ADS-B水平位置误差的标准差/km 4×10−3
    ADS-B垂直位置误差的标准差/km 6.6×10−3
    虚警概率 0.01
    下载: 导出CSV

    表  2  TDOA与IDOA的检测性能比较

    Table  2.   Comparison of detection performance between TDOA and IDOA

    方法虚警概率检测概率
    TDOA0.03250.9998
    IDOA0.01580.9986
    下载: 导出CSV
  • [1] 张军. 空域监视技术的新进展及应用[J]. 航空学报, 2011, 32(1): 1-14.

    ZHANG J. New development and application of airspace surveillance technology[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 1-14(in Chinese).
    [2] ICAO. Technical provisions for mode S services and extended squitter: ICAO 9871[S]. Montreal: ICAO, 2012.
    [3] RTCA DO-260B. Minimum operational performance standards for 1090 MHz extended squitter automatic dependent surveillance-broadcast (ADS-B) and traffic information services-broadcast (TIS-B): ED-102A[S]. Washington, D. C. : RTCA, 2009.
    [4] International Civil Aviation Organization Asia and Pacific Office. Guidance material on comparison of surveillance technologies (GMST)[R]. Montreal: ICAO, 2007.
    [5] STROHMEIER M, SCHAFER M, LENDERS V, et al. Realities and challenges of nextgen air traffic management: The case of ADS-B[J]. IEEE Communications Magazine, 2014, 52(5): 111-118. doi: 10.1109/MCOM.2014.6815901
    [6] STROHMEIER M, LENDERS V, MARTINOVIC I. On the security of the automatic dependent surveillance-broadcast protocol[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 1066-1087.
    [7] SCHÄFER M, LENDERS V, MARTINOVIC I. Experimental analysis of attacks on nextgeneration air traffic communication[M]//ABDALLA M, POINTCHEVAL D, FOUQUE P A, et al. Applied cryptography and network security. Berlin: Springer, 2013: 253-271.
    [8] FINKE C, BUTTS J, MILLS R, et al. Enhancing the security of aircraft surveillance in the next generation air traffic control system[J]. International Journal of Critical Infrastructure Protection, 2013, 6(1): 3-11. doi: 10.1016/j.ijcip.2013.02.001
    [9] HABLEEL E, BAEK J, BYON Y J, et al. How to protect ADS-B: Confidentiality framework for future air traffic communication[C]//Proceedings of the IEEE Conference on Computer Communications Workshops. Piscataway: IEEE Press, 2015: 155-160.
    [10] AMIN S, CLARK T, OFFUTT R, et al. Design of a cyber security framework for ADS-B based surveillance systems[C]//Proceedings of the Systems and Information Engineering Design Symposium. Piscataway: IEEE Press, 2014: 304-309.
    [11] LI W, KAMAL P. Integrated aviation security for defense-in-depth of next generation air transportation system[C]//Proceedings of the IEEE International Conference on Technologies for Homeland Security. Piscataway: IEEE Press, 2011: 136-142.
    [12] BAEK J, BYON Y J, HABLEEL E, et al. Making air traffic surveillance more reliable: A new authentication framework for automatic dependent surveillance-broadcast (ADS-B) based on online/offline identity-based signature[J]. Security and Communication Networks, 2015, 8(5): 740-750. doi: 10.1002/sec.1021
    [13] 丁建立, 邹云开, 王静, 等. 基于深度学习的ADS-B异常数据检测模型[J]. 航空学报, 2019, 40(12): 323220. doi: 10.7527/S1000-6893.2019.23220

    DING J L, ZOU Y K, WANG J, et al. ADS-B anomaly data detection model based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 323220(in Chinese). doi: 10.7527/S1000-6893.2019.23220
    [14] WANG W Y, CHEN G, WU R B, et al. A low-complexity spoofing detection and suppression approach for ADS-B[C]//Proceedings of the Integrated Communication, Navigation and Surveillance Conference. Piscataway: IEEE Press, 2015: 1-8.
    [15] 王文益, 陈庚, 吴仁彪, 等. 基于十字阵列的ADS-B欺骗式干扰抑制方法: CN104360323A[P]. 2015-02-18.

    WANG W Y, CHEN G, WU R B, et al. ADS-B deception jamming restraining method based on cross array: CN104360323A[P]. 2015-02-18(in Chinese).
    [16] STROHMEIER M, LENDERS V, MARTINOVIC I. Intrusion detection for airborne communication using PHY-layer information[M]//JULISCH K, KRUEGEL C. Detection of intrusions and malware, and vulnerability assessment. Berlin: Springer, 2015: 67-77.
    [17] SCHÄFER M, LEU P, LENDERS V, et al. Secure motion verification using the Doppler effect[C]//Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. New York: ACM, 2016: 135-145.
    [18] GHOSE N, LAZOS L. Verifying ADS-B navigation information through Doppler shift measurements[C]//Proceedings of the IEEE/AIAA 34th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2015: 1-27.
    [19] LI T Y, WANG B H, SHANG F T, et al. Dynamic temporal ADS-B data attack detection based on sHDP-HMM[J]. Computers & Security, 2020, 93: 101789.
    [20] YING X H, MAZER J, BERNIERI G, et al. Detecting ADS-B spoofing attacks using deep neural networks[C]//Proceedings of the IEEE Conference on Communications and Network Security. Piscataway: IEEE Press, 2019: 187-195.
    [21] HABLER E, SHABTAI A. Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages[J]. Computers & Security, 2018, 78: 155-173.
    [22] NUSEIBEH B, HALEY C B, FOSTER C. Securing the skies: Inrequirements we trust[J]. Computer, 2009, 42(9): 64-72. doi: 10.1109/MC.2009.299
    [23] STROHMEIER M, MARTINOVIC I, LENDERS V. A k-NN-based localization approach for crowdsourced air traffic communication networks[J]. IEEE Transactions on Aerospace Electronic Systems, 2018, 54(3): 1519-1529. doi: 10.1109/TAES.2018.2797760
    [24] SCHAFER M, LENDERS V, SCHMITT J. Secure track verification[C]//Proceedings of the IEEE Symposium on Security and Privacy. Piscataway: IEEE Press, 2015: 199-213.
    [25] NAGANAWA J, MIYAZAKI H. A theory of aircraft position verification using TDOA[C]//Proceedings of the Asia-Pacific Microwave Conference. Piscataway: IEEE Press, 2018: 833-835.
    [26] US Department of Defense. Global positioning system standard positioning service performance standard[S]. Washington, D. C. : US Department of Defense, 2008.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  108
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-17
  • 录用日期:  2022-09-16
  • 网络出版日期:  2022-11-14
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答