留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大规模卫星星座组网的码分多址干扰分析

徐可笛 徐兆斌 郭晓旭 杨嘉 成恒飞 金仲和

徐可笛,徐兆斌,郭晓旭,等. 大规模卫星星座组网的码分多址干扰分析[J]. 北京航空航天大学学报,2024,50(9):2885-2892 doi: 10.13700/j.bh.1001-5965.2022.0741
引用本文: 徐可笛,徐兆斌,郭晓旭,等. 大规模卫星星座组网的码分多址干扰分析[J]. 北京航空航天大学学报,2024,50(9):2885-2892 doi: 10.13700/j.bh.1001-5965.2022.0741
XU K D,XU Z B,GUO X X,et al. Analysis of CDMA interference in large-scale satellite constellation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2885-2892 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0741
Citation: XU K D,XU Z B,GUO X X,et al. Analysis of CDMA interference in large-scale satellite constellation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2885-2892 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0741

大规模卫星星座组网的码分多址干扰分析

doi: 10.13700/j.bh.1001-5965.2022.0741
基金项目: 国家自然科学基金面上项目(62073289); 国家自然科学基金(U21A20443)
详细信息
    通讯作者:

    E-mail:zjuxzb@zju.edu.cn

  • 中图分类号: V11

Analysis of CDMA interference in large-scale satellite constellation

Funds: National Natural Science Foundation of China General Program (62073289); National Natural Science Foundation of China(U21A20443)
More Information
  • 摘要:

    码分多址(CDMA)的通信体制是大规模卫星星座组网的主要部分,针对星间多通道通信存在多址干扰的情况,对其接收链路建立模型,描述灵敏度与比特能量噪声密度比(BENR)、设备采样信噪比(SNR)的关系,并分析多址干扰和加性白噪声对SNR的影响。在MATLAB仿真不同接收、干扰功率时的BENR与灵敏度,仿真结果表明,信干比(SIR)大于0 dB时,干扰信号对灵敏度影响较小,而维持高灵敏度时可抵抗−6 dB干扰。建立3个发射器和1个接收器的实验平台,由Chipscope、MATLAB软件处理数据,得到符合实际应用需求的接收灵敏度,实验结果表明,SIR大于0 dB时,接收灵敏度可达−107 dBm,高灵敏度下可抵抗−9 dB干扰,误差影响因素为电路噪声。理论分析与实测相符,为实际低轨卫星星座组网的设计奠定了基础。

     

  • 图 1  码分多址系统结构

    Figure 1.  System structure of code division multiple access

    图 2  接收端的状态转换

    Figure 2.  State transition of receiving end

    图 3  接收端的软件结构

    Figure 3.  Software structure of receiving end

    图 4  多址干扰示意图

    Figure 4.  Schematic diagram of multiple access interference

    图 5  当前通道接收功率、干扰功率对接收情况的影响

    Figure 5.  Influence of current channel reception power and interference power on reception

    图 6  验证实验实施框图

    Figure 6.  Verification test implementation block diagram

    表  1  接收机参数

    Table  1.   Receiver parameter

    $ {f_{\mathrm{s}}}/ {\text{MHz}} $ $ {f_{\mathrm{b}}}/ {\text{MHz}} $ $ {f_{\text{D}}}/ {\text{kHz}} $ $ {T_{{\mathrm{corr}}}}/ {\text{ms}} $ $ {N_{\text{f}}}/ {\text{dBm}} $ $ {L_{\text{w}}}/ {\text{dB}} $ $ {B_{\mathrm{R}}}/ {\text{kHz}} $ $ {f_\Delta }/ {\text{kHz}} $
    40 10.23 115 0.4096 6 0.9 20 1.22
    下载: 导出CSV

    表  2  接收链路参数

    Table  2.   Receiving link parameter

    Pt/
    dBm
    Ll/
    dB
    Ls/
    dB
    La/
    dB
    Gt(α1β1)/
    dB
    Gr(α2β2)/
    dB
    Ts/
    K
    k/
    (dBm·Hz)−1
    −4 −1 −164 −2 −9 35 300 −228.6
    下载: 导出CSV

    表  3  不同接收功率和干扰功率时的BER情况

    Table  3.   BER of different reception power and interference power

    $ C/{\text{dBm}} $ $ I/{\text{dBm}} $ $ {\mathrm{BER}} $
    −107 −104 0
    −107 −99 $3.05 \times {10^{ - 7}}$
    −107 −98 $3.66 \times {10^{ - 7}}$
    −107 −97 $1.65 \times {10^{ - 6}}$
    −107 −94 $1.05 \times {10^{ - 4}}$
    −107 −89 $3.82 \times {10^{ - 2}}$
    −85 −82 0
    −85 −72 $9.76 \times {10^{ - 7}}$
    −85 −71 $7.80 \times {10^{ - 6}}$
    −85 −70 $3.82 \times {10^{ - 5}}$
    −60 −57 0
    −60 −47 $3.05 \times {10^{ - 7}}$
    −60 −46 $5.73 \times {10^{ - 6}}$
    −60 −45 $4.01 \times {10^{ - 5}}$
    下载: 导出CSV
  • [1] 吴树范, 王伟, 温济帆, 等. 低轨互联网星座发展研究[J]. 北京航空航天大学学报, 2024, 50(1): 1-11.

    WU S F, WANG W, WEN J F, et al. Review on development of LEO Internet constellation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 1-11(in Chinese).
    [2] 姜逸飞, 吴树范, 莫乾坤. 基于大规模卫星星座的6G组网部署及核心网节点动态规划技术[C]//推动网络演进促进应用创新—5G网络创新研讨会. 北京: TD产业联盟, 2021: 408-411.

    JIANG Y F, WU S F, MO Q K. 6G networking deployment and core network node dynamic planning technology based on large-scale satellite constellation [C]//Proceedings of the Promoting Network Evolution and Promoting Application Innovation-Proceedings of 5G Network Innovation Seminar. Beijing: Telecommunication Development Industry Alliance, 2021: 408-411(in Chinese).
    [3] 孙建亮, 崔国刚, 周英庆. 发展我国低轨卫星通信星座系统的思考[J]. 通信技术, 2020, 53(9): 2224-2227. doi: 10.3969/j.issn.1002-0802.2020.09.022

    SUN J L, CUI G G, ZHOU Y Q. Thoughts on development of China’s low-orbit satellite communication constellation system[J]. Communications Technology, 2020, 53(9): 2224-2227(in Chinese). doi: 10.3969/j.issn.1002-0802.2020.09.022
    [4] 陈全, 杨磊, 郭剑鸣, 等. 低轨巨型星座网络: 组网技术与研究现状[J]. 通信学报, 2022, 43(5): 177-189. doi: 10.11959/j.issn.1000-436x.2022075

    CHEN Q, YANG L, GUO J M, et al. LEO mega-constellation network: Networking technologies and state of the art[J]. Journal on Communications, 2022, 43(5): 177-189(in Chinese). doi: 10.11959/j.issn.1000-436x.2022075
    [5] 方芳, 吴明阁. 全球低轨卫星星座发展研究[J]. 飞航导弹, 2020(5): 88-92.

    FANG F, WU M G. Research on the development of global LEO satellite constellation[J]. Aerodynamic Missile Journal, 2020(5): 88-92(in Chinese).
    [6] XU X Y, WANG C H, JIN Z H. A MAC protocol for distributed satellite network[C]//Proceedings of the IEEE 4th International Conference on Computer and Communication Engineering Technology. Piscataway: IEEE Press, 2021: 327-331.
    [7] EDMONSON W, GEBREYOHANNES S, DILLION A, et al. Systems engineering of inter-satellite communications for distributed systems of small satellites[C]//Proceedings of the Annual IEEE Systems Conference Proceedings. Piscataway: IEEE Press, 2015: 705-710.
    [8] TANEN BAUM A S. 计算机网络[M]. 4版. 潘爱民, 译. 北京: 清华大学出版社, 2004.

    TANENBAUM A S. Computer networks[M]. 4th ed. PAN A M, translated. Beijing: Tsinghua University Press, 2004(in Chinese).
    [9] 李倩. 低轨卫星通信系统随机接入技术研究[D]. 北京: 北京邮电大学, 2019.

    LI Q. Research on low-orbit satellite random access technology[D]. Beijing: Beijing University of Posts and Telecommunications, 2019(in Chinese).
    [10] 韦芬芬, 刘晓旭, 谢继东, 等. 低轨卫星物联网多址接入方式研究[J]. 计算机技术与发展, 2019, 29(5): 116-120. doi: 10.3969/j.issn.1673-629X.2019.05.025

    WEI F F, LIU X X, XIE J D, et al. Research on multiple access methods for LEO satellite IoT[J]. Computer Technology and Development, 2019, 29(5): 116-120(in Chinese). doi: 10.3969/j.issn.1673-629X.2019.05.025
    [11] 黄长文, 朱立东. 低轨卫星系统扩频ALOHA多址接入性能分析[C]//第十三届卫星通信学术年会. 北京: 中国通信学会, 2017: 86-93.

    HUANG C W, ZHU L D. Performance analysis of spread spectrum ALOHA multiple access for low orbit satellite systems [C]//Proceedings of the 13th Annual Conference on Satellite Communications. Beijing: China Institute of Communications, 2017: 86-93(in Chinese).
    [12] NGUYEN D T, PARK Y. Performance improvement of optical satellite communications by interleaved IEEE 802.11 LDPC[C]//Proceedings of the Tenth International Conference on Ubiquitous and Future Networks. Piscataway: IEEE Press, 2018: 575-579.
    [13] CHEN B C, YU L. Design and implementation of LDMA for low earth orbit satellite formation network[C]//Proceedings of the IFIP 9th International Conference on Embedded and Ubiquitous Computing. Piscataway: IEEE Press, 2011: 409-413.
    [14] 窦中兆, 雷湘. WCDMA系统原理与无线网络优化[M]. 北京: 清华大学出版社, 2009.

    DOU Z Z, LEI X. WCDMA system principle and wireless network optimization[M]. Beijing: Tsinghua University Press, 2009(in Chinese).
    [15] MENG E T, BU X Y. Two-dimensional joint acquisition of Doppler factor and delay for MC-DS-CDMA in LEO satellite system[J]. IEEE Access, 2020, 8: 148203-148213. doi: 10.1109/ACCESS.2020.3015754
    [16] MENG E T, LI R D, YU J H, et al. Joint CCI mitigation and power control for MC-DS-CDMA in LEO satellite networks[J]. IEEE Internet of Things Journal, 2022, 9(18): 17627-17639. doi: 10.1109/JIOT.2022.3156376
    [17] 程鹏仇, 佩亮, 周玥, 等. 802.20 OFDMA系统的上行接入同步算法[J]. 浙江大学学报(工学版), 2008, 42(11): 1894-1899.

    CHENG P Q, PEI L, ZHOU Y, et al. Uplink access synchronization algorithm for 802.20 OFDMA system[J]. Journal of Zhejiang University (Engineering Edition), 2008, 42(11) : 1894-1899(in Chinese).
    [18] 谢展腾. LEO卫星CDMA上行链路功率控制算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    XIE Z T. The research of CDMA uplink power control algorithms for LEO satellites[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [19] ILCEV S D. Analyses of code division multiple access (CDMA) schemes for global mobile satellite communications (GMSC)[J]. TransNav: The International Journal on Marine Navigation and Safety of Sea Transportation, 2020, 14(4): 805-810. doi: 10.12716/1001.14.04.03
    [20] NEINAVAIE M, KHALIFE J, KASSAS Z M. Doppler stretch estimation with application to tracking globalstar satellite signals[C]//Proceedings of the IEEE Military Communications Conference. Piscataway: IEEE Press, 2021: 647-651.
    [21] 朱国富. 扩频体制低轨卫星通信信号捕获与跟踪系统设计[J]. 电讯技术, 2022, 62(5): 576-584. doi: 10.3969/j.issn.1001-893x.2022.05.004

    ZHU G F. Design of a spread spectrum LEO satellite signal acquisition and tracking system[J]. Telecommunication Engineering, 2022, 62(5): 576-584(in Chinese). doi: 10.3969/j.issn.1001-893x.2022.05.004
    [22] 牛翼. 基于5G的低轨卫星系统下行频偏估计算法研究[D]. 西安: 西安电子科技大学, 2020.

    NIU Y. Research on frequency offset estimation algorithm for downlink of LEO satellite system based on 5G[D]. Xi’an: Xidian University, 2020(in Chinese).
    [23] KAPLAN E D. GPS原理与应用[M]. 2版. 寇艳红, 译. 北京: 电子工业出版社, 2012.

    KAPLAN E D. Principles and applications of GPS[M]. 2nd ed. KOU Y H, translated. Beijing: Electronic Industry Press, 2012(in Chinese).
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  101
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 录用日期:  2022-11-19
  • 网络出版日期:  2022-12-15
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答