留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的高超声速飞行器双曲率前缘气动热预测方法

杨帆 林明月 胡宗民 罗长童

杨帆,林明月,胡宗民,等. 基于机器学习的高超声速飞行器双曲率前缘气动热预测方法[J]. 北京航空航天大学学报,2024,50(9):2826-2834 doi: 10.13700/j.bh.1001-5965.2022.0746
引用本文: 杨帆,林明月,胡宗民,等. 基于机器学习的高超声速飞行器双曲率前缘气动热预测方法[J]. 北京航空航天大学学报,2024,50(9):2826-2834 doi: 10.13700/j.bh.1001-5965.2022.0746
YANG F,LIN M Y,HU Z M,et al. Prediction method of aero-heating of hypersonic vehicle bi-curvature leading edge based on machine learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2826-2834 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0746
Citation: YANG F,LIN M Y,HU Z M,et al. Prediction method of aero-heating of hypersonic vehicle bi-curvature leading edge based on machine learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2826-2834 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0746

基于机器学习的高超声速飞行器双曲率前缘气动热预测方法

doi: 10.13700/j.bh.1001-5965.2022.0746
基金项目: 国家自然科学基金(12172365,12072353,12132017); 国家重点研发计划(2019YFA0405204)
详细信息
    通讯作者:

    E-mail:huzm@imech.ac.cn

  • 中图分类号: V221+.3;TB553

Prediction method of aero-heating of hypersonic vehicle bi-curvature leading edge based on machine learning

Funds: National Natural Science Foundation of China (12172365,12072353,12132017); National Key Research and Development Program of China (2019YFA0405204)
More Information
  • 摘要:

    高超声速气动热预测技术是高超声速飞行器发展的关键技术之一,气动热环境的精准预测对飞行器热防护系统设计及气动布局优化具有重要意义。为快速获得高超声速飞行器表面的热流分布情况,缩短飞行器设计周期,基于具有广义可分离特性、可实现强非线性数据快速建模的多层分块(MBB)算法,提出一种针对高超声速飞行器双曲率前缘气动热分布的快速预测方法。通过数值计算获得双曲率前缘驻点区的气动热分布作为训练集数据,基于MBB算法提出预测热流分布的显式表达式,对表达式预测结果的统计分析显示,表达式预测值与测试集数据的偏差低于2%,这表明其具有较高的预测精度;将驻点区热流分布表达式进行外推,验证了机器学习公式在不同几何外形下的适用性。在双曲率前缘构型的防热设计及气动外形优化阶段,所提表达式可实现气动热环境的精准、快速预测。

     

  • 图 1  MBB算法的示意[30]

    Figure 1.  Flowchart of MBB algorithm [30]

    图 2  钝锥表面热流分布的数值计算结果与实验值[39]对比

    Figure 2.  Comparison of distributions of heat flux on the surface of cone obtained by numerical simulation and experimental value[39]

    图 3  计算模型及网格划分

    Figure 3.  Schematic diagram of computational modeling and meshing

    图 4  网格无关性检验

    Figure 4.  Grid independence verification

    图 5  不同Ma和几何外形下的热流分布

    Figure 5.  Distributions of heat flux at different Ma and geometries

    图 6  训练误差分布

    Figure 6.  Distribution of training error

    图 7  2%偏差带下公式与数值计算结果的对比

    Figure 7.  Comparison between formula under 2% deviation band and numerical results

    图 8  驻点热流值及其导数值随R0的变化

    Figure 8.  The variations of stagnation heat flux and its derivative with the values of R0

    图 9  热流预测公式对比

    Figure 9.  Comparisons of formulas of heat flux

    表  1  数值模拟的参数设置

    Table  1.   Settings of parameters for numerical simulation

    Mar/mmR/mmR0
    6,7,8,9,1022,4,6,···,18,201,2,3,···,9,10
    下载: 导出CSV

    表  2  MBB算法热流分布公式

    Table  2.   Formula of heat flux distributions obtained by MBB algorithm

    序号 q/qref R2
    1 $ 0.803\;735-0.037\;163\;3 \ln ( {Ma})-0.128\;599 R_{0}^{-2}+0.398\;309 R_{0}^{-1}-0.645\;404 ({{\mathrm{sin}}}\theta )^{2} $ 0.99348017
    2 $ 0.782\;952-0.014\;027\;4 {Ma}^{{2}/{3}}-0.128\;64 R_{0}^{-1}+0.398\;357 R_0^{-1}-0.645\;377(\sin \theta )^{ 2} $ 0.99309438
    3 $ 0.743\;498-0.026\;448\;9 {Ma}^{{1}/{2}}+0.324\;038 R_{0}^{{2}/{3}}+0.012\;534\;3 R_{0}^{{1}/{3}}-0.641\;078 (\sin \theta )^{ 2} $ 0.99206282
    4 $ 0.706\;337-0.004\;669\;15 {Ma}+0.324\;044 R_{2}^{{2}/{3}}+0.012\;532\;5 R_{0}^{{1}/{3}}-0.641\;065 (\sin \theta)^{2} $ 0.99174652
    下载: 导出CSV

    表  3  新增算例参数设置

    Table  3.   Settings of parameters for new cases

    Mar/mmR0
    6,7,8,9,103,45
    下载: 导出CSV
  • [1] LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636. doi: 10.1016/j.paerosci.2020.100636
    [2] FLAHERTY K W, ANDREWS K M, LISTON G W. Operability benefits of airbreathing hypersonic propulsion for flexible access to space[J]. Journal of Spacecraft and Rockets, 2010, 47(2): 280-287. doi: 10.2514/1.43750
    [3] 梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报, 2021, 42(4): 409-424. doi: 10.3873/j.issn.1000-1328.2021.04.002

    LIANG W, JIN H, MENG S H, et al. Research progress on new thermal protection mechanism of hypersonic vehicles[J]. Journal of Astronautics, 2021, 42(4): 409-424(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.04.002
    [4] ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston: A2AA, 2006.
    [5] 卞荫贵, 钟家康. 高温边界层传热[M]. 北京: 科学出版社, 1986.

    BIAN Y G, ZHONG J K. High temperature boundary layer heat transfer[M]. Beijing: Science Press, 1986(in Chinese).
    [6] 高莹莹, 杨凯威, 孔维萱, 等. 高超声速飞行器尖化前缘气动热环境研究[J]. 导弹与航天运载技术, 2019(6): 112-116.

    GAO Y Y, YANG K W, KONG W X, et al. Research on hypersonic sharp leading edge heating environment[J]. Missiles and Space Vehicles, 2019(6): 112-116(in Chinese).
    [7] 孙健, 刘伟强. 尖化前缘高导热材料防热分析[J]. 航空学报, 2011, 32(9): 1622-1628.

    SUN J, LIU W Q. Analysis of sharp leading-edge thermal protection of high thermal conductivity materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1622-1628(in Chinese).
    [8] 喻成璋, 刘卫华. 高超声速飞行器气动热预测技术研究进展[J]. 航空科学技术, 2021, 32(2): 14-21.

    YU C Z, LIU W H. Research status of aeroheating prediction technology for hypersionic aircraft[J]. Aeronautical Science & Technology, 2021, 32(2): 14-21(in Chinese).
    [9] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1): 325-345.

    PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 325-345(in Chinese).
    [10] KARIMI M S, OBOODI M J. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows[J]. Heat and Mass Transfer, 2019, 55(2): 547-569. doi: 10.1007/s00231-018-2416-1
    [11] FAY J, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aerospace Sciences, 1958, 25: 73-85. doi: 10.2514/8.7517
    [12] KEMP N H, RIDDELL F R. Heat transfer to satellite vehicles reenters the atmosphere[J]. Jet Propulsion, 1957, 27(2): 132-137. doi: 10.2514/8.12603
    [13] VAN DRIEST E R. The problem of aerodynamic heating[J]. Aeronautical Engineering Review, 1956, 15(10): 26-41.
    [14] KITAMURA K, ROE P, ISMAIL F. Evaluation of Euler fluxes for hypersonic flow computations[J]. AIAA Journal, 2009, 47(1): 44-53. doi: 10.2514/1.33735
    [15] FENG Q, CHEN J J, DI S, et al. A grid strategy for predicting the space plane’s hypersonic aerodynamic heating loads[J]. Aerospace Science and Technology, 2019, 86: 659-670. doi: 10.1016/j.ast.2019.01.049
    [16] 阎超, 禹建军, 李君哲. 热流CFD计算中格式和网格效应若干问题研究[J]. 空气动力学学报, 2006, 24(1): 125-130. doi: 10.3969/j.issn.0258-1825.2006.01.023

    YAN C, YU J J, LI J Z. Scheme effect and grid dependency in CFD computations of heat transfer[J]. Acta Aerodynamica Sinica, 2006, 24(1): 125-130(in Chinese). doi: 10.3969/j.issn.0258-1825.2006.01.023
    [17] 潘沙, 冯定华, 丁国昊, 等. 气动热数值模拟中的网格相关性及收敛[J]. 航空学报, 2010, 31(3): 493-499.

    PAN S, FENG D H, DING G H, et al. Grid dependency and convergence of hypersonic aerothermal simulation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 493-499(in Chinese).
    [18] HOFFMANN K, SIDDIQUI M, CHIANG S. Difficulties associated with the heat flux computations of high speed flows by the Navier-Stokes equations[C]//Proceedings of the 29th Aerospace Sciences Meeting. Reston: AIAA, 1991: 467.
    [19] LEES L. Laminar heat transfer over blunt-nosed bodies at hypersonic flight speeds[J]. Jet Propulsion, 1956, 26(4): 259-269. doi: 10.2514/8.6977
    [20] SCALA S M. A study of hypersonic ablation[C]//Proceedings of the 10th International Congress. Berlin: Springer, 1959: 790.
    [21] ZHAO R, WEN C Y, TIAN X D, et al. Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer[J]. International Journal of Heat and Mass Transfer, 2018, 121: 986-998. doi: 10.1016/j.ijheatmasstransfer.2018.01.054
    [22] KLOPFER G, YEE H. Viscous hypersonic shock-on-shock interaction on blunt cowl lips[C]//Proceedings of the 26th Aerospace Sciences Meeting. Reston: AIAA, 1988: 233.
    [23] LEE J H J, RHO O. Accuracy of AUSM+ scheme in hypersonic blunt body flow calculations[C]//Proceedings of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1998: 1538.
    [24] 马崇立, 刘景源. 网格对高超声速钝头体表面热流数值模拟结果的影响[J]. 航空学报, 2023, 44(5): 68-81.

    MA C L, LIU J Y. Effect of grid strategy on numerical simulation results of aerothermal heating loads over hypersonic blunt bodies[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 68-81(in Chinese).
    [25] 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689.

    ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689(in Chinese).
    [26] 陈正. 高超声速气动热实验数据的多层学习方法[D]. 北京: 中国科学院大学, 2021.

    CHEN Z. Multi-layer learning method for hypersonic aerothermal experimental data[D]. Beijing: University of Chinese Academy of Sciences, 2021(in Chinese).
    [27] CHEN X, CAO Z W, FU B, et al. Adding-point strategy for surrogate-based reduced-order hypersonic aerothermodynamic modeling based on fuzzy clustering[J]. Journal of Spacecraft and Rockets, 2021, 58(1): 244-253. doi: 10.2514/1.A34813
    [28] 聂春生, 黄建栋, 王迅, 等. 基于POD方法的复杂外形飞行器热环境快速预测方法[J]. 空气动力学学报, 2017, 35(6): 760-765.

    NIE C S, HUANG J D, WANG X, et al. Fast aeroheating prediction method for complex shape vehicles based on proper orthogonal decomposition[J]. Acta Aerodynamica Sinica, 2017, 35(6): 760-765(in Chinese).
    [29] 张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报, 2021, 42(4): 524167.

    ZHANG Z C, GAO T Y, ZHANG L, et al. Aeroheating agent model based on radial basis function neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524167(in Chinese).
    [30] CHEN C, LUO C T, JIANG Z L. A multilevel block building algorithm for fast modeling generalized separable systems[J]. Expert Systems with Applications, 2018, 109: 25-34. doi: 10.1016/j.eswa.2018.05.021
    [31] PENG J, LUO C T, HAN Z J, et al. Parameter-correlation study on shock-shock interaction using a machine learning method[J]. Aerospace Science and Technology, 2020, 107: 106247. doi: 10.1016/j.ast.2020.106247
    [32] 李帅, 彭俊, 罗长童, 等. 基于多层分块算法的激波干扰流场预测[J]. 力学学报, 2021, 53(12): 3284-3297. doi: 10.6052/0459-1879-21-385

    LI S, PENG J, LUO C T, et al. Prediction of shock interference flow field structure based on the multi-level block building algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3284-3297(in Chinese). doi: 10.6052/0459-1879-21-385
    [33] 彭俊. 强激波相互作用及其极端热载荷诱发机制研究[D]. 北京: 中国科学院大学, 2021.

    PENG J. Study on strong shock wave interaction and its induced mechanism of extreme thermal load[D]. Beijing: University of Chinese Academy of Sciences, 2021(in Chinese).
    [34] MCBRIDE B J. NASA Glenn coefficients for calculating thermodynamic properties of individual species: NASA/TP-2002-211556[R]. Washington, D. C. : NASA, 2002.
    [35] 傅林, 高正红, 左英桃. 基于HLL-HLLC的高阶WENO格式及其应用研究[J]. 计算力学学报, 2014, 31(1): 128-134. doi: 10.7511/jslx201401022

    FU L, GAO Z H, ZUO Y T. High order WENO scheme based on HLL-HLLC solver and its application[J]. Chinese Journal of Computational Mechanics, 2014, 31(1): 128-134(in Chinese). doi: 10.7511/jslx201401022
    [36] KOZA J R. Genetic programming: On the programming of computers by means of natural selection[M]. 5th ed. Cambridge: MIT Press, 1992.
    [37] CHEN C, LUO C T, JIANG Z L. Block building programming for symbolic regression[J]. Neurocomputing, 2018, 275: 1973-1980.
    [38] 陈辰. 快速建模算法及其在流体力学中的应用[D]. 北京: 中国科学院大学, 2017.

    CHEN C. Fast modeling algorithm and its application in fluid mechanics[D]. Beijing: University of Chinese Academy of Sciences, 2017(in Chinese).
    [39] CLEARY J W. Effects of angle of attack and blunt-ness on laminar heating-rate distributions of a 15° cone at a Mach number of 10.6: NASA TN D-5450[R]. Washington, D. C. : NASA, 1969.
    [40] CHEN X Q, HOU Z X, LIU J X, et al. Bluntness impact on performance of waverider[J]. Computers and Fluids, 2011, 48(1): 30-43. doi: 10.1016/j.compfluid.2011.03.011
    [41] LIU J X, HOU Z X, DING G H, et al. Numerical and experimental study on waverider with blunt leading edge[J]. Computers & Fluids, 2013, 84(19): 203-217.
    [42] LIU J X, HOU Z X, CHEN X Q, et al. Experimental and numerical study on the aero-heating characteristics of blunted waverider[J]. Applied Thermal Engineering, 2013, 51(1-2): 301-314. doi: 10.1016/j.applthermaleng.2012.09.026
    [43] LI S B, WANG Z G, HUANG W, et al. Aerodynamic performance investigation on waverider with variable blunt radius in hypersonic lows[J]. Acta Astronautica, 2017, 137: 362-372. doi: 10.1016/j.actaastro.2017.05.001
    [44] 叶博嘉, 鲍序, 刘博, 等. 基于机器学习的航空器进近飞行时间预测[J]. 航空学报, 2020, 41(10): 324136. doi: 10.7527/S1000-6893.2020.24136

    YE B J, BAO X, LIU B, et al. Machine learning for aircraft approach time prediction[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 324136(in Chinese). doi: 10.7527/S1000-6893.2020.24136
    [45] MAHULIKAR S P. Theoretical aerothermal concepts for configuration design of hypersonic vehicles[J]. Aerospace Science and Technology, 2005, 9(8): 681-685. doi: 10.1016/j.ast.2005.08.006
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  105
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 录用日期:  2022-12-05
  • 网络出版日期:  2023-02-14
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答