留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间飞网系统动力学建模与仿真

陈鹏旭 吴晨晨 倪智宇

陈鹏旭,吴晨晨,倪智宇. 空间飞网系统动力学建模与仿真[J]. 北京航空航天大学学报,2024,50(9):2951-2962 doi: 10.13700/j.bh.1001-5965.2022.0747
引用本文: 陈鹏旭,吴晨晨,倪智宇. 空间飞网系统动力学建模与仿真[J]. 北京航空航天大学学报,2024,50(9):2951-2962 doi: 10.13700/j.bh.1001-5965.2022.0747
CHEN P X,WU C C,NI Z Y. Dynamic modelling and simulation of a tethered-net in space[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2951-2962 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0747
Citation: CHEN P X,WU C C,NI Z Y. Dynamic modelling and simulation of a tethered-net in space[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2951-2962 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0747

空间飞网系统动力学建模与仿真

doi: 10.13700/j.bh.1001-5965.2022.0747
基金项目: 国家自然科学基金(51905527);中国科学院沈阳自动化研究所自主部署项目;中央高校基本科研业务费专项资金;辽宁省教育厅基本科研项目(JYTMS20230254);国家自然科学基金基础科学中心项目(62388101)
详细信息
    通讯作者:

    E-mail:wuchenchen@njust.edu.cn

  • 中图分类号: V414.9;TB122

Dynamic modelling and simulation of a tethered-net in space

Funds: National Natural Science Foundation of China (51905527); Funding of Shenyang Institute of Automation, Chinese Academy of Sciences; Fundamental Research Funds for the Central Universities; Basic Scientific Research Project of Education Department of Liaoning Province (JYTMS20230254); Basic Science Center Program of the National Natural Science Foundation of China (62388101)
More Information
  • 摘要:

    空间飞网系统捕获带有自旋的空间碎片后,碎片会对捕获网与卫星间的连接绳施加扭矩,而目前绳索相关动力学模型无法完整描述其扭转行为。基于集中质量法,对绳索进行二次离散,建立了可以描述绳索扭转行为的动力学模型。通过与传统绳索动力学模型的对比及扭转实验,验证了该模型能够描述绳索在拉伸、弯曲及扭转载荷下的行为,发现绳索的扭转会产生额外的牵引力。针对飞网展开过程进行了仿真分析与实验,验证该动力学模型适用于飞网系统,并对飞网与空间碎片的组合体进行了仿真分析,发现因为绳索扭转产生的牵引力,会对主体卫星的稳定性产生一定的影响,忽略绳索的扭转行为会降低动力学仿真模型的准确性。

     

  • 图 1  空间飞网示意

    Figure 1.  Schematic diagram of a tethered-net system

    图 2  坐标系示意

    Figure 2.  Schematic diagram of the coordinate system

    图 3  离散过程示意

    Figure 3.  Schematic diagram of discrete process

    图 4  模型参数示意

    Figure 4.  Schematic diagram of model parameters

    图 5  ${\varphi _{i,{\mathrm{s}}}}$、${\varphi _{i,{\mathrm{l}}}}$及切线示意(蓝色为相交切线)

    Figure 5.  Schematic about ${\varphi _{i,{\mathrm{s}}}}$,${\varphi _{i,{\mathrm{l}}}}$ and tangents (intersecting tangent lines in blue)

    图 6  拉力与离散体数量的关系

    Figure 6.  Relationship between tension and discrete quantities

    图 7  绳索观测节点示意

    Figure 7.  Schematic diagram of tether observation node

    图 8  两种绳索模型对扭转运动的反馈(图(a)~图(d)为二次离散模型,图(e)~图(h)为有限段模型)

    Figure 8.  Feedback on torsional motion from two rope models (Fig. (a)~Fig. (d) for quadratic discrete model, Fig. (e)~Fig. (h) for model with line segments)

    图 9  各节点绕z轴的转角

    Figure 9.  Rotation angle around z axis for each node

    图 10  节点1与节点10的间距随时间变化情况

    Figure 10.  Distance between node 1 and node 10 varies with time

    图 11  节点1 在z轴方向上的拉力变化情况

    Figure 11.  Tension in z direction varies with time for node 1

    图 12  两种绳索模型受拉伸和弯曲载荷时的反馈

    Figure 12.  Feedback for tensile and bending loads for two rope models

    图 13  扭转实验验证

    Figure 13.  Torsion experiment verification

    图 14  飞网展开过程仿真与实验对比((a)~(c)为仿真,(d)~(f)为实验)

    Figure 14.  Comparison between simulation and experiment of tether-net deployment process ((a)~(c) for simulation, (d)~(f) for experiment)

    图 15  仿真与实验的${D_{\mathrm{v}}}$变化

    Figure 15.  Variation of ${D_{\mathrm{v}}}$ from simulation and experiment

    图 16  组合体仿真3D

    Figure 16.  Composite simulation 3D

    图 17  组合体仿真数值结果

    Figure 17.  Numerical results of combination simulation

    表  1  飞网展开过程仿真参数

    Table  1.   Simulation parameters of tether-net deployment process

    飞网网
    体大小/m
    发射
    角度/(°)
    发射
    速度/(m·s−1)
    牵引块
    质量/kg
    牵引块
    数量
    3×3 30 50 0.3 8
    下载: 导出CSV

    表  2  组合体仿真参数

    Table  2.   Simulation parameters of combination

    绳索
    材料
    绳索
    直径/cm
    拖曳物
    重量/kg
    连接绳
    长度/cm
    碎片
    转速/$({\mathrm{r}} \cdot {{\mathrm{s}}^{ - 1}})$
    尼龙 0.5 2 90 2
    下载: 导出CSV
  • [1] KESSLER D J, COUR-PALAIS B G. Collision frequency of artificial satellites: the creation of a debris belt[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A6): 2637-2646. doi: 10.1029/JA083iA06p02637
    [2] LIOU J C. An active debris removal parametric study for LEO environment remediation[J]. Advances in Space Research, 2011, 47(11): 1865-1876. doi: 10.1016/j.asr.2011.02.003
    [3] FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68: 1-26. doi: 10.1016/j.paerosci.2014.03.002
    [4] AGLIETTI G S, TAYLOR B, FELLOWES S, et al. The active space debris removal mission RemoveDebris. Part 2: in orbit operations[J]. Acta Astronautica, 2020, 168: 310-322. doi: 10.1016/j.actaastro.2019.09.001
    [5] BISCHOF B, KERSTEIN L. ROGER-robotic geostationary orbit restorer[C]// 34th COSPAR Scientific Assembly. Florida Miami: NASA Astrobiology Institute General, 2003.
    [6] AGLIETTI G S, TAYLOR B, FELLOWES S, et al. RemoveDEBRIS: an in-orbit demonstration of technologies for the removal of space debris[J]. The Aeronautical Journal, 2020, 124(1271): 1-23. doi: 10.1017/aer.2019.136
    [7] LAVAGNA M, ARMELLIN R, BOMBELLI A, et al. Debris removal mechanism based on thethered nets[C]// International Symposium on Artificial Intelligence. Piedmon Torino: Robotics and Automation in Space, 2012.
    [8] 陈钦, 杨乐平, 张青斌. 空间飞网发射动力学建模仿真研究与地面试验[J]. 国防科技大学学报, 2009, 31(3): 16-19.

    CHEN Q, YANG L P, ZHANG Q B. Dynamic model and simulation of orbital net casting and ground test[J]. Journal of National University of Defense Technology, 2009, 31(3): 16-19(in Chinese).
    [9] SHAN M H, GUO J, GILL E. Deployment dynamics of tethered-net for space debris removal[J]. Acta Astronautica, 2017, 132: 293-302. doi: 10.1016/j.actaastro.2017.01.001
    [10] SHABANA A A, YAKOUB R Y. Three dimensional absolute nodal coordinate formulation for beam elements: theory[J]. Journal of Mechanical Design, 2001, 123(4): 606-613. doi: 10.1115/1.1410100
    [11] BERZERI M, SHABANA A A. Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation[J]. Journal of Sound Vibration, 2000, 235(4): 539-565. doi: 10.1006/jsvi.1999.2935
    [12] OMAR M A, SHABANA A A. A two-dimensional shear deformable beam for large rotation and deformation problems[J]. Journal of Sound Vibration, 2001, 243(3): 565-576. doi: 10.1006/jsvi.2000.3416
    [13] STADNYK K, ULRICH S. Validating the deployment of a novel tether design for orbital debris removal[J]. Journal of Spacecraft and Rockets, 2020, 57(6): 1335-1349. doi: 10.2514/1.A34781
    [14] BENVENUTO R, LAVAGNA M, CINGOLI A, et al. Multibody dynamics simulation tool to support the GNC design for active debris removal with flexible elements[C]// 9th International ESA Conference on Guidance Navigation and Control Systems. Haute-Garonne Toulouse: European Space Agency, 2014.
    [15] SI J Y, PANG Z J, DU Z H, et al. Dynamics modeling and simulation of a net closing mechanism for tether-net capture[J/OL]. International Journal of Aerospace Engineering. 2021(2021-08-06)[2022-08-18]. https://doi.org/10.1016/j.asr.2019.08.006.
    [16] ENDO Y, KOJIMA H, TRIVAILO P M. Study on acceptable offsets of ejected nets from debris center for successful capture of debris[J]. Advances in Space Research, 2020, 66(2): 450-461. doi: 10.1016/j.asr.2020.04.012
    [17] ZHANG G B, ZHANG Q B, FENG Z W, et al. A simplified model for fast analysis of the deployment dynamics of tethered-net in space[J]. Advances in Space Research, 2021, 68(4): 1960-1974. doi: 10.1016/j.asr.2021.04.032
    [18] 潘冬, 张越, 魏承, 等. 空间大型末端执行器绳索捕获动力学建模与仿真[J]. 振动与冲击, 2015, 34(1): 74-79.

    PAN D, ZHANG Y, WEI C, et al. Dynamic modeling and simulation on rope capturing by space large end effector[J]. Journal of Vibration and Shock, 2015, 34(1): 74-79(in Chinese).
    [19] 高庆玉. 空间绳网系统展开动力学与优化设计[D]. 长沙: 国防科技大学, 2017.

    GAO Q Y. Deployment dynamics and optimization design of space net system[D]. Changsha: National University of Defense Technology, 2017(in Chinese).
    [20] HOVELL K, ULRICH S. Postcapture dynamics and experimental validation of subtethered space debris[J]. Journal of Guidance Control Dynamics, 2018, 41(2): 519-525. doi: 10.2514/1.G003049
    [21] HOU Y S, LIU C, HU H Y, et al. Dynamic computation of a tether-net system capturing a space target via discrete elastic rods and an energy-conserving integrator[J]. Acta Astronautica, 2021, 186: 118-134. doi: 10.1016/j.actaastro.2021.05.029
    [22] 张国斌. 新型空间柔性捕获机构动力学研究[D]. 长沙: 国防科技大学, 2018.

    ZHANG G B. Dynamics of the novel space capture mechanism[D]. Changsha: National University of Defense Technology, 2018(in Chinese).
    [23] SHAN M, GUO J, GILL E. An analysis of the flexibility modeling of a net for space debris removal[J]. Advances in Space Research, 2020, 65: 1083-1094. doi: 10.1016/j.asr.2019.10.041
    [24] GOMEZ N O, WALKER S. Earth’s gravity gradient and eddy currents effects on the rotational dynamics of space[J]. Debris Objects: Envisat Case Study. Advances in Space Research, 2015, 56(3): 494-508.
    [25] 沈剑, 韩峰, 陈放, 等. 基于绝对节点坐标法的柔性绳索体建模仿真研究[J]. 科学技术与工程, 2016, 16(31): 1-7.

    SHEN J, HAN F, CHEN F, et al. Modeling and simulation of flexible cable-body by absolute nodal coordinate formulation[J]. Science Technology and Engineering, 2016, 16(31): 1-7(in Chinese).
    [26] 刘延柱, 潘振宽, 戈新生. 多体系统动力学[M]. 2版. 北京: 高等教育出版社, 2014: 33-48.

    LIU Y Z, PAN Z K, GE X S. Dynamics of multibody systems[M]. 2nd ed. Beijing: Higher Education Press, 2014: 33-48(in Chinese).
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  110
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 录用日期:  2023-01-10
  • 网络出版日期:  2023-02-08
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答