留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于联合仿真的曲面共形多孔结构拓扑优化方法

付君健 徐勇 周祥曼 舒正涛 田启华

付君健,徐勇,周祥曼,等. 基于联合仿真的曲面共形多孔结构拓扑优化方法[J]. 北京航空航天大学学报,2024,50(9):2781-2790 doi: 10.13700/j.bh.1001-5965.2022.0751
引用本文: 付君健,徐勇,周祥曼,等. 基于联合仿真的曲面共形多孔结构拓扑优化方法[J]. 北京航空航天大学学报,2024,50(9):2781-2790 doi: 10.13700/j.bh.1001-5965.2022.0751
FU J J,XU Y,ZHOU X M,et al. Topological optimization method for conformal cellular structures on surfaces based on co-simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2781-2790 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0751
Citation: FU J J,XU Y,ZHOU X M,et al. Topological optimization method for conformal cellular structures on surfaces based on co-simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2781-2790 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0751

基于联合仿真的曲面共形多孔结构拓扑优化方法

doi: 10.13700/j.bh.1001-5965.2022.0751
基金项目: 国家自然科学基金(51775308);湖北省自然科学基金(2021CFB236);智能制造装备与技术全国重点实验室开放基金(IMETKF2023016)
详细信息
    通讯作者:

    E-mail:zhouxman@ctgu.edu.cn

  • 中图分类号: TH112

Topological optimization method for conformal cellular structures on surfaces based on co-simulation

Funds: National Natural Science Foundation of China (51775308); Natural Science Foundation of Hubei Province (2021CFB236); Open Fund of Stale Key Laboratory of Intelligent Manufacturing Equipment and Technology (IMETKF2023016)
More Information
  • 摘要:

    针对宏观曲面结构上多孔结构单胞构型与设计域外形不匹配,导致曲面结构优化困难的问题,提出一种基于联合仿真的曲面共形多孔结构拓扑优化方法。基于三周期极小曲面隐式水平集函数,实现多孔结构的参数化建模。采用等参单元法理论,建立自然坐标系到笛卡儿坐标系的映射关系,实现曲面多孔结构的共形建模。构造线性插值函数,保证多孔结构单胞之间的C0连续。引入可变切割水平集函数,建立MATLAB与ANSYS联合仿真的多孔结构拓扑优化框架。数值算例表明:所提方法可有效实现曲面多孔结构的拓扑优化设计,确保多孔结构单胞与设计域外形的匹配,提升多孔结构的力学性能。

     

  • 图 1  三周期极小曲面多孔结构

    Figure 1.  Triply periodic minimal surfaces based cellular structures

    图 2  P型单胞共形建模

    Figure 2.  Conformal modeling of P unit cell

    图 3  多孔结构建模过程

    Figure 3.  Modeling of cellular structures

    图 4  局部插值模型

    Figure 4.  Local interpolation model

    图 5  几何突变的梯度多孔结构

    Figure 5.  Graded cellular structures with abrupt geometric features

    图 6  几何连续的梯度多孔结构

    Figure 6.  Graded cellular structures with geometric continuity

    图 7  联合仿真程序流程

    Figure 7.  Flow of co-simulation program

    图 8  圆筒结构设计域

    Figure 8.  Design domain of cylinder structure

    图 9  圆筒结构有限元网格划分

    Figure 9.  Finite element meshing of cylinder structure

    图 10  圆筒结构优化迭代曲线

    Figure 10.  Optimize iterative curve of cylinder structure

    图 11  圆筒结构最优拓扑构型

    Figure 11.  The optimal configuration of cylinder structure

    图 12  预定义单胞及结构设计域

    Figure 12.  Predefined unit cell and structural design domains

    图 13  自由曲面结构有限元网格划分

    Figure 13.  Finite element meshing of free-form surface structure

    图 14  自由曲面结构优化迭代曲线

    Figure 14.  Optimize iterative curve of free-form surface structure

    图 15  自由曲面结构最优拓扑构型

    Figure 15.  Optimal configuration of free-form surface structure

    图 16  预定义单胞及结构设计域

    Figure 16.  Predefined unit cell and structural design domains

    图 17  曲面夹层结构有限元网格划分

    Figure 17.  Finite element meshing of curving sandwich structure

    图 18  曲面夹层结构优化迭代曲线

    Figure 18.  Optimize iterative curve of curving sandwich structure

    图 19  曲面夹层结构最优拓扑构型

    Figure 19.  Optimal configuration of curving sandwich structure

    图 20  未共形的曲面夹层结构

    Figure 20.  Non-conformal curving sandwich structure

    图 21  载荷-最大变形曲线

    Figure 21.  Load-maximum deformation curve

    图 22  3种结构最大变形位移云图

    Figure 22.  Maximum deformation nephogram of three structures

  • [1] 王向明, 苏亚东, 吴斌, 等. 微桁架点阵结构在飞机结构/功能一体化中的应用[J]. 航空制造技术, 2018, 61(10): 16-25.

    WANG X M, SU Y D, WU B, et al. Application for additive manufacturing of lattice materials on integrated aircraft structures and functions[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 16-25(in Chinese).
    [2] 邓昊宇, 王春洁. 三维点阵结构等效热分析与优化方法[J]. 北京航空航天大学学报, 2019, 45(6): 1122-1128.

    DENG H Y, WANG C J. Equivalent thermal analysis and optimization method for three-dimensional lattice structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1122-1128(in Chinese).
    [3] WANG B, YANG M S, ZHANG D Y, et al. Alternative approach for imperfection-tolerant design optimization of stiffened cylindrical shells via energy barrier method[J]. Thin-Walled Structures, 2022, 172: 108838. doi: 10.1016/j.tws.2021.108838
    [4] 张壮雅, 赵珂, 杨晓峰, 等. 基于三周期极小曲面和等参单元法的骨支架建模方法研究[J]. 机械设计与制造, 2017(11): 234-237. doi: 10.3969/j.issn.1001-3997.2017.11.060

    ZHANG Z Y, ZHAO K, YANG X F, et al. Reseachon bone scaffold modeling method basedon triply periodic minimaland isoperimetric element method[J]. Machinery Design & Manufacture, 2017(11): 234-237(in Chinese). doi: 10.3969/j.issn.1001-3997.2017.11.060
    [5] 王清辉, 夏刚, 徐志佳, 等. 面向组织工程的松质骨微观结构TPMS建模方法[J]. 计算机辅助设计与图形学学报, 2016, 28(11): 1949-1956. doi: 10.3969/j.issn.1003-9775.2016.11.017

    WANG Q H, XIA G, XU Z J, et al. Modelling the microstructures of cancellous bone based on triply periodic minimal surface for tissue engineering[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(11): 1949-1956(in Chinese). doi: 10.3969/j.issn.1003-9775.2016.11.017
    [6] YOO D J. Porous scaffold design using the distance field and triply periodic minimal surface models[J]. Biomaterials, 2011, 32(31): 7741-7754. doi: 10.1016/j.biomaterials.2011.07.019
    [7] 余学伟, 李琳慧, 张涛, 等. 基于三周期极小曲面和体素距离场的复杂轮廓点阵结构建模[J]. 重庆大学学报, 2022, 45(6): 75-84. doi: 10.11835/j.issn.1000-582X.2021.115

    YU X W, LI L H, ZHANG T, et al. Modeling of complex contour lattice structure based on triply periodic minimal surface and voxel distance field[J]. Journal of Chongqing University, 2022, 45(6): 75-84(in Chinese). doi: 10.11835/j.issn.1000-582X.2021.115
    [8] 任毅如, 向剑辉, 何杰, 等. 基于导重法的自重载荷下悬臂梁结构拓扑优化[J]. 北京航空航天大学学报, 2021, 47(7): 1338-1344.

    REN Y R, XIANG J H, HE J, et al. Topology optimization of cantilever structure with self-weight load based on guide-weight method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1338-1344(in Chinese).
    [9] 付君健, 舒正涛, 田启华, 等. 功能梯度多孔结构拓扑优化的混合水平集方法[J]. 机械工程学报, 2022, 58(17): 249-260. doi: 10.3901/JME.2022.17.249

    FU J J, SHU Z T, TIAN Q H, et al. A hybrid level set method for topology optimization of functionally graded cellular structures[J]. Journal of Mechanical Engineering, 2022, 58(17): 249-260(in Chinese). doi: 10.3901/JME.2022.17.249
    [10] 孙鹏飞, 张跃, 尹鹏, 等. 隐式曲面梯度多孔结构拓扑优化设计方法[J]. 西安交通大学学报, 2022, 56(1): 85-95. doi: 10.7652/xjtuxb202201010

    SUN P F, ZHANG Y, YIN P, et al. A topology optimization design method of graded cellular structures with implicit surfaces[J]. Journal of Xi’an Jiaotong University, 2022, 56(1): 85-95(in Chinese). doi: 10.7652/xjtuxb202201010
    [11] NIKNAM H, AKBARZADEH A H, RODRIGUE D, et al. Architected multi-directional functionally graded cellular plates[J]. Materials & Design, 2018, 148: 188-202.
    [12] QI D X, LU Q Y, HE C W, et al. Impact energy absorption of functionally graded chiral honeycomb structures[J]. Extreme Mechanics Letters, 2019, 32: 100568. doi: 10.1016/j.eml.2019.100568
    [13] 赵芳垒, 敬石开, 刘晨燕. 基于局部相对密度映射的变密度多孔结构设计方法[J]. 机械工程学报, 2018, 54(19): 121-128. doi: 10.3901/JME.2018.19.121

    ZHAO F L, JING S K, LIU C Y. Variable density cellular structure design method base on local relative density mapping[J]. Journal of Mechanical Engineering, 2018, 54(19): 121-128(in Chinese). doi: 10.3901/JME.2018.19.121
    [14] 蔡金虎, 王春洁. 基于映射的梯度点阵结构设计方法[J]. 振动与冲击, 2020, 39(20): 74-81.

    CAI J H, WANG C J. A graded lattice structure design method based on mapping process[J]. Journal of Vibration and Shock, 2020, 39(20): 74-81(in Chinese).
    [15] TOWNSEND S, KIM H A. A level set topology optimization method for the buckling of shell structures[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 1783-1800. doi: 10.1007/s00158-019-02374-9
    [16] VOGIATZIS P, MA M, CHEN S K, et al. Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 477-497. doi: 10.1016/j.cma.2017.09.012
    [17] YE Q, GUO Y, CHEN S K, et al. Topology optimization of conformal structures on manifolds using extended level set methods (X-LSM) and conformal geometry theory[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 164-185. doi: 10.1016/j.cma.2018.08.045
    [18] ZHOU Y, GAO L, LI H. Graded infill design within free-form surfaces by conformal mapping[J]. International Journal of Mechanical Sciences, 2022, 224: 107307. doi: 10.1016/j.ijmecsci.2022.107307
    [19] HUO W D, LIU C, DU Z L, et al. Topology optimization on complex surfaces based on the moving morphable component method and computational conformal mapping[J]. Journal of Applied Mechanics, 2022, 89(5): 051008. doi: 10.1115/1.4053727
    [20] ZONG H M, LIU H, MA Q P, et al. VCUT level set method for topology optimization of functionally graded cellular structures[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 487-505. doi: 10.1016/j.cma.2019.05.029
    [21] WANG L, LI Z S, NI B W, et al. A robust topology optimization method considering bounded field parameters with uncertainties based on the variable time step parametric level-set method[J]. Applied Mathematical Modelling, 2022, 107: 441-463. doi: 10.1016/j.apm.2022.03.008
    [22] LI D W, DAI N, TANG Y L, et al. Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes[J]. Journal of Mechanical Design, 2019, 141(7): 071402. doi: 10.1115/1.4042617
    [23] 蔡升勇, 习俊通. 基于形函数控制的组织工程骨架孔隙结构实体建模方法[J]. 机械工程学报, 2009, 45(7): 297-304. doi: 10.3901/JME.2009.07.297

    CAI S Y, XI J T. Computer modeling approach for a porous scaffold structure in tissue engineering based on the shape function control[J]. Journal of Mechanical Engineering, 2009, 45(7): 297-304(in Chinese). doi: 10.3901/JME.2009.07.297
    [24] WANG Y Q, CHEN F F, WANG M Y. Concurrent design with connectable graded microstructures[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 84-101. doi: 10.1016/j.cma.2016.12.007
    [25] CRAMER A D, CHALLIS V J, ROBERTS A P. Microstructure interpolation for macroscopic design[J]. Structural and Multidisciplinary Optimization, 2016, 53(3): 489-500. doi: 10.1007/s00158-015-1344-7
    [26] 杜义贤, 张跃, 付君健, 等. 承载散热一体化的功能梯度多孔结构拓扑优化设计[J]. 计算机辅助设计与图形学学报, 2021, 33(7): 1141-1150.

    DU Y X, ZHANG Y, FU J J, et al. Topology optimization design of functionally graded cellular structure with integrated load bearing and heat dissipation[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(7): 1141-1150(in Chinese).
    [27] LIU H, ZONG H M, SHI T L, et al. M-VCUT level set method for optimizing cellular structures[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 367: 113154. doi: 10.1016/j.cma.2020.113154
    [28] ALLAIRE G, JOUVE F, TOADER A M. Structural optimization using sensitivity analysis and a level-set method[J]. Journal of Computational Physics, 2004, 194(1): 363-393. doi: 10.1016/j.jcp.2003.09.032
    [29] 龙凯, 左正兴. 基于拓扑优化和形状优化方法的主轴承盖结构设计[J]. 农业机械学报, 2008, 39(4): 152-156.

    LONG K, ZUO Z X. Structural design of main bearing cap based on topological optimization and shape optimization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(4): 152-156(in Chinese).
    [30] 范文杰, 徐进永, 张子达. 基于双向渐进结构优化法的装载机动臂拓扑优化[J]. 农业机械学报, 2006, 37(11): 24-27. doi: 10.3969/j.issn.1000-1298.2006.11.007

    FAN W J, XU J Y, ZHANG Z D. Topology optimization on arm of loader based on BESO[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(11): 24-27(in Chinese). doi: 10.3969/j.issn.1000-1298.2006.11.007
    [31] ZHOU M, ROZVANY G. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 309-336. doi: 10.1016/0045-7825(91)90046-9
    [32] XIE Y M, ZUO Z H, HUANG X D, et al. Convergence of topological patterns of optimal periodic structures under multiple scales[J]. Structural and Multidisciplinary Optimization, 2012, 46(1): 41-50. doi: 10.1007/s00158-011-0750-8
  • 加载中
图(22)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  42
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 录用日期:  2023-01-14
  • 网络出版日期:  2023-02-28
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答