-
摘要:
由于航电系统通信需求的日趋复杂化,对基于FC-AE-1553组网的通信系统需要采用多网络控制器(NC)构建分布式网络环境,如何实施多个控制器之间的控制权分配,并解决跨域业务冲突的问题是其中的关键。为实现多NC协同调度,提出了一种主从NC协作的多NC动态带宽调度机制,采用并发通信方式提高网络带宽利用率,同时提升各类业务的传输保障能力。对于周期性业务采用固定时隙进行传输,对于强时效性突发业务采用抢占式带宽分配,对于一般突发业务按照“先跨域后域内”分别进行带宽分配。通过OMNeT++搭建FC-AE-1553网络仿真平台,结果表明:该调度机制可以满足多NC条件下不同类型通信业务的协同带宽分配和调度,对于周期性业务和强时效性突发业务,可以保障其实时性通信要求;对于一般突发业务,在网络负载不超过57%时也能为其提供合适的带宽进行传输。与单NC集中式相比,当网络负载大于0.5或跨域/域内业务比值大于0.8时,多NC控制具有较明显的时延优势。
-
关键词:
- FC-AE-1553 /
- 多网络控制系统 /
- 动态调度 /
- 控制权分配 /
- 跨域传输
Abstract:Due to the increasingly complex communication requirements of avionics system, the communication system based on FC-AE-1553 networking needs to use multiple network controllers (NC) to build a distributed network environment. The key lies in the distribution of control rights across various controllers and the resolution of cross-domain service conflicts. In order to realize multi NC collaborative scheduling, this paper proposes a multi NC dynamic bandwidth scheduling mechanism based on master-slave NC collaboration, which uses concurrent communication to improve network bandwidth utilization and enhance the transmission guarantee capability of various services. For periodic traffic, fixed time slots are used for transmission, for time constraint burst traffic, preemptive bandwidth allocation is used, and for common burst traffic, bandwidth allocation is based on "inter-domain and then intra-domain". The results indicate that the scheduling mechanism is capable of satisfying the collaborative bandwidth allocation and scheduling of various communication services in the presence of multiple network controllers. Furthermore, it can ensure the real-time usage remains below 57%. Multi-NC control offers a clear advantage in terms of latency compared to single NC centralized control, specifically when the network load exceeds 0.5 or the ratio of cross-domain/intra-domain services is higher than 0.8.
-
表 1 业务类型及相关指标
Table 1. Service type and related metrics
业务类型 业务流方向 发送周期/ms 最大允许时延/ms 调度方式 PT NC→NT(域内)
NT→NC(域内)1.5~10 1.5~10 固定时隙 CBT NT→NT 突发 100 动态分配 TCBT NC→NT(域内) 突发 0.05 抢占式 -
[1] 何锋. 机载网络技术基础[M]. 北京: 国防工业出版社, 2018: 74-82.HE F. Fundamentals of airborne network[M]. Beijing: National Defense Industry Press, 2018: 74-82(in Chinese). [2] 林强, 熊华钢, 张其善. 光纤通道中的1553总线技术[J]. 航空电子技术, 2004, 35(1): 1-5.LIN Q, XIONG H G, ZHANG Q S. The usage of 1553 in the fibre channel[J]. Avionics Technology, 2004, 35(1): 1-5(in Chinese). [3] SOURAV B, NAIDU C D, SAI Y P, et al. Design and implementation of remote terminal for MIL-STD-1553 B[C]//2017 IEEE 7th International Advance Computing Conference (IACC). Piscataway: IEEE Press, 2017: 270-274. [4] 于晓磊, 陈绍炜, 周虎. FC-AE-1553B通信结构的仿真研究[J]. 信息安全与通信保密, 2010, 8(5): 52-54.YU X L, CHEN S W, ZHOU H. Study and smulation of FC-AE-1553 network[J]. Information Security and Communications Privacy, 2010, 8(5): 52-54(in Chinese). [5] 徐亚军, 熊华钢. 未来航电系统FC互连的拓扑结构研究[J]. 电光与控制, 2004, 11(4): 17-20, 23.XU Y J, XIONG H G. Study on topology of FC interconnections in future avionic system[J]. Electronics Optics & Control, 2004, 11(4): 17-20, 23(in Chinese). [6] 鞠铭阳, 张利洲, 王世奎. FC-AE-1553协议分析与研究[J]. 现代电子技术, 2016, 39(11): 21-23.JU M Y, ZHANG L Z, WANG S K. Analysis and research of FC-AE-1553 protocol[J]. Modern Electronics Technique, 2016, 39(11): 21-23(in Chinese). [7] WANG X, WANG C, YU B W, et al. Communication module of FC-AE-1553 interface[C]// 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC). Piscataway: IEEE Press, 2015: 1369-1373. [8] 曹素芝, 张善从. FC-AE-1553高级特性介绍[J]. 光通信技术, 2010, 34(2): 49-51.CAO S Z, ZHANG S C. Analysis on advanced features of FC-AE-1553[J]. Optical Communication Technology, 2010, 34(2): 49-51(in Chinese). [9] FANG L, ZHAO G H, CAO S Z. Design of heterogeneous FC-AE-1553 network[C]// 2014 IEEE International Conference on Control Science and Systems Engineering. Piscataway: IEEE Press, 2014: 130-134. [10] MCGARRY M P, REISSLEIN M. Investigation of the DBA algorithm design space for EPONs[J]. Journal of Lightwave Technology, 2012, 30(14): 2271-2280. doi: 10.1109/JLT.2012.2196023 [11] 高敏, 朱岩, 喻芳, 等. 具有优先级消息的FC-AE-1553建模仿真分析[J]. 电子设计工程, 2014, 22(9): 145-148.GAO M, ZHU Y, YU F, et al. Modeling and performance analysis of FC-AE-1553 with priority between messages[J]. Electronic Design Engineering, 2014, 22(9): 145-148(in Chinese). [12] 丁凡, 熊华钢, 宋丽茹. FC-AE-1553网络的建模仿真研究[J]. 计算机工程与应用, 2008, 44(31): 20-24.DING F, XIONG H G, SONG L R. Modeling and simulation for FC-AE-1553 network[J]. Computer Engineering and Applications, 2008, 44(31): 20-24(in Chinese). [13] 吴少俊, 赵光恒, 王立芊, 等. FC-AE-1553网络的“并发交换式”动态带宽调度机制[J]. 北京航空航天大学学报, 2016, 42(12): 2579-2586.WU S J, ZHAO G H, WANG L Q, et al. Dynamic bandwidth allocation mechanism with parallel and switching for FC-AE-1553 network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2579-2586(in Chinese). [14] ZHAN Y Y, WANG L Q, WU S J, et al. Dynamic bandwidth allocation for switching FCAE-1553 network in avionics system[C]// 2018 20th International Conference on Advanced Communication Technology (ICACT). Piscataway: IEEE Press, 2018: 1. [15] HE Y, WANG L Q, ZHAN Y Y, et al. Dynamic bandwidth scheduling algorithm for space applications in FC-AE-1553 switching network[C]//2018 Asia Communications and Photonics Conference (ACP). Piscataway: IEEE Press, 2018: 1-3. [16] WANG J, WANG L Q, WU S J, et al. A hybrid bandwidth allocation algorithm based on parallel scheduling for FC-AE-1553 switching network[C]// Asia Communications and Photonics Conference 2016. Washington, D. C. : OSA, 2016: 1-3. [17] WU S J, ZHAN Y Y, QIAO K Y, et al. Scheduling mechanism of FC-AE-1553 network based on credit ranking[C]// 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). Piscataway: IEEE Press, 2018: 1-8. [18] ZHAN Y Y, WANG L Q, LI J J, et al. Static dynamic bandwidth allocation for PON FC-AE-1553 network[C]//2016 15th International Conference on Optical Communications and Networks (ICOCN). Piscataway: IEEE Press, 2016: 1-3. [19] WU S J, ZHAN Y Y, QIAO K Y, et al. Dynamic bandwidth scheduling for multi protocol convergence fiber channel network[C]//2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops). Piscataway: IEEE Press, 2018: 54-59. [20] ZHONG Z F, WANG L Q, LI J J, et al. FC-AE-1553 switching network supporting IP services based on parallel scheduling strategy[C]//2018 23rd Opto-Electronics and Communications Conference (OECC). Piscataway: IEEE Press, 2018: 1-2. [21] 何玥. FC-AE-1553多级网络多业务调度机制研究[D]. 北京: 北京邮电大学, 2019: 33-40.HE Y. Research on multi-service scheduling mechanism of FC-AE-1553 multi-stage network[D]. Beijing: Beijing University of Posts and Telecommunications, 2019: 33-40(in Chinese). [22] BROTHERS T J, MUKNAHALLIPATNA S, HAMANN J C. Fibre channel switch modeling at fibre channel-2 level for large fabric storage area network simulations using OMNeT: preliminary results[C]//32nd IEEE Conference on Local Computer Networks (LCN 2007). Piscataway: IEEE Press, 2007: 191-202.