留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于暗通道先验引导的图像去雾网络

黄淑英 夏钰锟 杨勇 万伟国 邱根莹

黄淑英,夏钰锟,杨勇,等. 基于暗通道先验引导的图像去雾网络[J]. 北京航空航天大学学报,2024,50(9):2717-2726 doi: 10.13700/j.bh.1001-5965.2022.0758
引用本文: 黄淑英,夏钰锟,杨勇,等. 基于暗通道先验引导的图像去雾网络[J]. 北京航空航天大学学报,2024,50(9):2717-2726 doi: 10.13700/j.bh.1001-5965.2022.0758
HUANG S Y,XIA Y K,YANG Y,et al. Image dehazing network based on dark channel prior guidance[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2717-2726 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0758
Citation: HUANG S Y,XIA Y K,YANG Y,et al. Image dehazing network based on dark channel prior guidance[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2717-2726 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0758

基于暗通道先验引导的图像去雾网络

doi: 10.13700/j.bh.1001-5965.2022.0758
基金项目: 国家自然科学基金(61862030,62072218,62261025); 江西省自然科学基金(20192ACB20002,20192ACBL21008);江西省博士后科研项目(2020KY44)
详细信息
    通讯作者:

    E-mail:greatyangy@126.com

  • 中图分类号: TP391.41

Image dehazing network based on dark channel prior guidance

Funds: National Natural Science Foundation of China (61862030,62072218,62261025); Jiangxi Provincial Natural Science Foundation (20192ACB20002,20192ACBL21008); Postdoctoral Research Projects of Jiangxi Province, China (2020KY44)
More Information
  • 摘要:

    基于深度学习的去雾方法多数直接学习有雾图像和无雾图像之间的映射关系,未结合有雾图像自身特点,存在雾信息检测不精确、去雾不彻底的问题。针对该问题,提出一种基于暗通道先验引导的图像去雾网络(DCPDNet)。通过卷积层提取有雾图像的浅层特征;构建2个特征增强模块(FEB)来增强图像的空间特征,该模块在2个尺度上对图像特征进行增强,即利用深层特征图实现语义特征的增强,浅层特征图对实现图像细节特征的增强;为使提取的特征更关注雾的区域,基于有雾图像中雾的成像特点设计基于引导图的特征校正模块(FCB),利用暗通道先验理论构建引导图将网络学习的注意力引导到有雾区域,对提取的深层特征图做进一步的细化和校正;利用残差结构的跳转连接,将增强的浅层特征补充网络丢失的细节特征,并经过卷积操作重建去雾后图像。实验结果证明:DCPDNet可以在保持模型轻量型及运行速度较快的情况下实现良好的去雾效果。与近年先进的去雾方法进行比较,DCPDNet不仅在效率上占有优势,其去雾效果在主观视觉感受和客观评价结果上都获得了更好的效果。

     

  • 图 1  DCPDNet 整体框架

    Figure 1.  Overall framework of DCPDNet

    图 2  FEB 结构

    Figure 2.  Structure of FEB

    图 3  FCB 结构

    Figure 3.  Structure of FCB

    图 4  图像去雾结果及中间结果

    Figure 4.  Image dehazing results and intermediate results

    图 5  室外有雾图像去雾结果对比

    Figure 5.  Comparison of dehazing results of outdoor hazy images

    图 6  室内有雾图像去雾结果对比

    Figure 6.  Comparison of dehazing results of indoor hazy images

    表  1  SOTS室外数据集测试结果

    Table  1.   Test results of SOTS outdoor dataset

    方法 PSNR SSIM MSE
    Meng[22] 15.78 0.8215 0.0327
    Berman[23] 18.15 0.8465 0.0215
    AOD-Net[10] 19.59 0.8163 0.0122
    PFFNet[11] 21.05 0.7968 0.0127
    EPDN[24] 20.57 0.8727 0.0131
    Light-DehazeNet[25] 18.81 0.8718 0.0152
    RefineDNet[26] 21.10 0.9081 0.0103
    本文 31.06 0.9749 0.0010
    下载: 导出CSV

    表  2  HSTS数据集测试结果

    Table  2.   Test results of HSTS dataset

    方法 PSNR SSIM MSE
    Meng[22] 15.32 0.7423 0.0332
    Berman[23] 17.60 0.7790 0.0241
    AOD-Net[10] 18.97 0.7899 0.0145
    PFFNet[11] 20.06 0.7694 0.0204
    EPDN[24] 21.74 0.8557 0.0099
    Light-DehazeNet[25] 19.75 0.8861 0.0111
    RefineDNet[26] 21.54 0.9034 0.0086
    本文 32.79 0.9790 0.0005
    下载: 导出CSV

    表  3  SOTS室内数据集测试结果

    Table  3.   Test results of SOTS indoor dataset

    方法 PSNR SSIM MSE
    Meng[22] 17.26 0.7875 0.0221
    Berman[23] 17.41 0.7781 0.0219
    AOD-Net[10] 17.63 0.7930 0.0227
    PFFNet[11] 24.76 0.8877 0.0039
    EPDN[24] 25.13 0.9137 0.0040
    Light-DehazeNet[25] 19.69 0.8377 0.0138
    RefineDNet[26] 20.56 0.8359 0.0110
    本文 31.21 0.9723 0.0009
    下载: 导出CSV

    表  4  平均运行时间对比

    Table  4.   Average runtime comparison

    方法 时间/ms
    Meng[22] 1304
    Berman[23] 4483
    AOD-Net[10] 12
    PFFNet[11] 29
    EPDN[24] 84
    Light-DehazeNet[25] 71
    RefineDNet[26] 757
    本文 211
    下载: 导出CSV

    表  5  模型大小对比

    Table  5.   Comparison of model size

    方法 模型大小/MB
    AOD-Net[10] 0.0166
    PFFNet[11] 57.05
    EPDN[24] 66.31
    Light-DehazeNet[25] 0.1201
    RefineDNet[26] 261.6
    本文 3.985
    下载: 导出CSV

    表  6  消融实验

    Table  6.   Ablation experiments

    Baseline FEB FCB SSIM PSNR
    × × 0.9579 27.17
    × 0.9673 29.24
    × 0.9731 29.63
    0.9749 31.06
    下载: 导出CSV
  • [1] SALAZAR-COLORES S, CABAL-YEPEZ E, RAMOS-ARREGUIN J M, et al. A fast image dehazing algorithm using morphological reconstruction[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2357-2366.
    [2] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    [3] GAO Y Y, HU H M, LI B, et al. Detail preserved single image dehazing algorithm based on airlight refinement[J]. IEEE Transactions on Multimedia, 2019, 21(2): 351-362. doi: 10.1109/TMM.2018.2856095
    [4] WANG W C, YUAN X H, WU X J, et al. Fast image dehazing method based on linear transformation[J]. IEEE Transactions on Multimedia, 2017, 19(6): 1142-1155. doi: 10.1109/TMM.2017.2652069
    [5] ZHU M Z, HE B W, WU Q. Single image dehazing based on dark channel prior and energy minimization[J]. IEEE Signal Processing Letters, 2018, 25(2): 174-178. doi: 10.1109/LSP.2017.2780886
    [6] LIU Q, GAO X B, HE L H, et al. Single image dehazing with depth-aware non-local total variation regularization[J]. IEEE Transactions on Image Processing, 2018, 27(10): 5178-5191. doi: 10.1109/TIP.2018.2849928
    [7] YANG Y, WANG Z W. Haze removal: Push DCP at the edge[J]. IEEE Signal Processing Letters, 2020, 27: 1405-1409. doi: 10.1109/LSP.2020.3013741
    [8] YEH C H, HUANG C H, KANG L W. Multi-scale deep residual learning-based single image haze removal via image decomposition[J]. IEEE Transactions on Image Processing, 2020, 29: 3153-3167.
    [9] CHEN W T, DING J J, KUO S Y. PMS-Net: Robust haze removal based on patch map for single images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 11681-11689.
    [10] LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: All-in-one dehazing network[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 4770-4778.
    [11] MEI K F, JIANG A W, LI J C, et al. Progressive feature fusion network for realistic image dehazing[C]//Proceedings of the Asian Conference on Computer Vision. Berlin: Springer, 2018: 203-215.
    [12] WANG A N, WANG W H, LIU J L, et al. AIPNet: Image-to-image single image dehazing with atmospheric illumination prior[J]. IEEE Transactions on Image Processing, 2018, 28(1): 381-393.
    [13] SONG Y F, LI J, WANG X G, et al. Single image dehazing using ranking convolutional neural network[J]. IEEE Transactions on Multimedia, 2018, 20(6): 1548-1560. doi: 10.1109/TMM.2017.2771472
    [14] ZHENG Z R, REN W Q, CAO X C, et al. Ultra-high-definition image dehazing via multi-guided bilateral learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 16180-16189.
    [15] CHEN T Y, FU J H, JIANG W T, et al. SRKTDN: Applying super resolution method to dehazing task[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 487-496.
    [16] LI Y N, LIU Y H, YAN Q X, et al. Deep dehazing network with latent ensembling architecture and adversarial learning[J]. IEEE Transactions on Image Processing, 2021, 30: 1354-1368. doi: 10.1109/TIP.2020.3044208
    [17] KIM G, PARK S W, KWON J. Pixel-wise Wasserstein autoencoder for highly generative dehazing[J]. IEEE Transactions on Image Processing, 2021, 30: 5452-5462. doi: 10.1109/TIP.2021.3084743
    [18] QIN X, WANG Z L, BAI Y C, et al. FFA-Net: Feature fusion attention network for single image dehazing[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020, 34(7): 11908-11915.
    [19] LU Z W, LONG B Y, YANG S Q. Saturation based iterative approach for single image dehazing[J]. IEEE Signal Processing Letters, 2020, 27: 665-669. doi: 10.1109/LSP.2020.2985570
    [20] JOHNSON J, ALAHI A, LIF F. Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 694-711.
    [21] LI B Y, REN W Q, FU D P, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2018, 28(1): 492-505.
    [22] MENG G F, WANG Y, DUAN J Y, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2013: 617-624.
    [23] BERMAN D, TREIBITZ T, AVIDAN S. Non-local image dehazing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 1674-1682.
    [24] QU Y Y, CHEN Y Z, HUANG J Y, et al. Enhanced pix2pix dehazing network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 8160-8168.
    [25] ULLAH H, MUHAMMAD K, IRFAN M, et al. Light-DehazeNet: Anovel lightweight CNN architecture for single image dehazing[J]. IEEE Transactions on Image Processing, 2021, 30: 8968-8982. doi: 10.1109/TIP.2021.3116790
    [26] ZHAO S Y, ZHANG L, SHEN Y, et al. RefineDNet: A weakly supervised refinement framework for single image dehazing[J]. IEEE Transactions on Image Processing, 2021, 30: 3391-3404. doi: 10.1109/TIP.2021.3060873
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  101
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-04
  • 录用日期:  2022-12-16
  • 网络出版日期:  2023-01-05
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答