留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载导航设备辅助的LEO卫星定位方法与仿真验证

徐鉴名 黄智刚 李锐

徐鉴名,黄智刚,李锐. 机载导航设备辅助的LEO卫星定位方法与仿真验证[J]. 北京航空航天大学学报,2024,50(10):3230-3238 doi: 10.13700/j.bh.1001-5965.2022.0759
引用本文: 徐鉴名,黄智刚,李锐. 机载导航设备辅助的LEO卫星定位方法与仿真验证[J]. 北京航空航天大学学报,2024,50(10):3230-3238 doi: 10.13700/j.bh.1001-5965.2022.0759
XU J M,HUANG Z G,LI R. LEO satellite positioning method and simulation verification aided by airborne navigation equipment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3230-3238 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0759
Citation: XU J M,HUANG Z G,LI R. LEO satellite positioning method and simulation verification aided by airborne navigation equipment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3230-3238 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0759

机载导航设备辅助的LEO卫星定位方法与仿真验证

doi: 10.13700/j.bh.1001-5965.2022.0759
基金项目: 国家重点研发计划(2020YFB0505602)
详细信息
    通讯作者:

    E-mail:3449421355@qq.com

  • 中图分类号: V249.3;U666.134

LEO satellite positioning method and simulation verification aided by airborne navigation equipment

Funds: National Key Research and Development Program of China (2020YFB0505602)
More Information
  • 摘要:

    复杂电磁环境下全球导航卫星系统(GNSS)容易被欺骗和干扰导致不可使用,而近地轨道(LEO)通导一体化卫星系统具有落地功率高和星座几何形状变化快的优势,是一种很好的应急备份导航源。但大多数LEO卫星系统在中低纬度地区可见卫星的数量仅有1~2颗,无法实现实时动态定位。因此,提出一种基于机载惯性导航系统(INS)、气压计辅助的组合定位算法,将INS、气压计当作伪卫星使用,通过配置原子钟联合来解决可观性不足的问题。所提算法利用LEO卫星观测数据修正INS的误差,同时针对可观性不能定量分析的问题提出一种衡量滤波器稳定的可估计性指标。仿真验证表明:所提算法利用LEO观测数据在9 min内将INS误差降低了60%左右,定位误差达到50 m以下,能够实现实时、稳定定位,提出的可估计性指标也能够衡量系统的稳定性。

     

  • 图 1  伪距和多普勒定位原理

    Figure 1.  Pseudo-range and Doppler positioning principle

    图 2  EKF递推算法

    Figure 2.  EKF recursive algorithm

    图 3  EKF在状态估计中的流程框

    Figure 3.  Flow chart of EKF in state estimation

    图 4  机载设备辅助LEO定位算法框

    Figure 4.  Block diagram of airborne equipment-assisted LEO positioning algorithm

    图 5  LEO卫星星空图

    Figure 5.  LEO satellite sky map

    图 6  不同初值LEO卫星定位性能

    Figure 6.  LEO satellite positioning performance with different initial values

    图 7  INS定位性能曲线

    Figure 7.  INS positioning performance curve

    图 8  INS、气压计辅助LEO卫星定位性能曲线

    Figure 8.  Performance curve of INS and barometer-assisted LEO satellite positioning

    图 9  INS、气压计、原子钟辅助LEO卫星定位性能曲线

    Figure 9.  Performance curve of INS, barometer, and atomic clock-assisted LEO satellite positioning

    表  1  陀螺仪、加速度计精度

    Table  1.   Accuracy of gyroscope and accelerometer

    激光陀螺NV-G300/((°)·s−1 加速度计/(m·s−2
    3.0×10 −6 9.8×10 −6
    下载: 导出CSV

    表  2  INS初始对准误差

    Table  2.   Initial alignment error of INS

    经度
    误差/(′)
    纬度
    误差/(′)
    高度
    误差/m
    东向速度
    误差/(m·s−1
    北向速度
    误差/(m·s−1
    天向速度
    误差/(m·s−1
    0.10.1100.10.10.1
    下载: 导出CSV

    表  3  滤波器过程噪声方差

    Table  3.   Noise variance of filter process m2

    $ \sigma _x^2 $ $ \sigma _y^2 $ $ \sigma _{\textit{z}}^2 $ $ \sigma _{\delta _t}^2 $
    10−4 10−4 10−4 10−9
    下载: 导出CSV

    表  4  滤波器观测噪声方差

    Table  4.   Observed noise variance of filter

    $ \sigma _\rho ^2 $/ m2 $ \sigma _f^2 $/Hz2
    16 0.04
    下载: 导出CSV

    表  5  不同初值LEO卫星定位误差统计

    Table  5.   Statistics of positioning errors of LEO satellites with different initial values m

    初值 95%水平的RMS 95%垂直的RMS 95%距离的RMS
    初值1 10.4137 9.3430 13.9906
    初值2 658.6316 848.4234 103
    下载: 导出CSV

    表  6  INS、气压计辅助LEO卫星定位误差统计

    Table  6.   Error statistics of INS and barometer-assisted LEO satellite positioning m

    初值 95%水平的RMS 95%垂直的RMS 95%距离的RMS
    初值1 22.5107 46.4294 48.8029
    初值2 148.2198 52.4217 156.2592
    下载: 导出CSV

    表  7  INS、气压计、原子钟辅助LEO卫星定位误差统计

    Table  7.   Error statistics of INS, barometer, and atomic clock- assisted LEO satellite positioning m

    初值 95%水平的RMS 95%垂直的RMS 95%距离的RMS
    初值1 32.0051 31.0504 44.3448
    初值2 34.0362 37.5253 50.6617
    下载: 导出CSV
  • [1] SU Y T, LIU Y Q, ZHOU Y Q, et al. Broadband LEO satellite communications: Architectures and key technologies[J]. IEEE Wireless Communications, 2019, 26(2): 55-61. doi: 10.1109/MWC.2019.1800299
    [2] TAN Y K , SCOTT C A , DEMPSTER A G . Detecting object movement through the use of two GNSS satellites[C]//Ignss Symp, JejuL Tan Y K, 2009: 103-114.
    [3] YE L , YANG Y , JING X , et al. Single-satellite integrated navigation algorithm based on broadband leo constellation communication links[J]. Remote Sensing, 2021, 13(7): 703.
    [4] DANCHIK R J. An overview of transit development[J]. Johns Hopkins Apl Technical Digest, 1998, 19(3): 18-26.
    [5] STANSELL Jr, Thomas A. Transit, the navy navigation satellite system[J]. Navigation, 1971, 18(1): 93-109. doi: 10.1002/j.2161-4296.1971.tb00077.x
    [6] LEVANON N. Instant active positioning with one LEO satellite[J]. Navigation, 1999, 46(2): 87-95. doi: 10.1002/j.2161-4296.1999.tb02397.x
    [7] LEVANON N. Quick position determination using 1 or 2 LEO satellites[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 736-754. doi: 10.1109/7.705883
    [8] TAN Y K. Positioning techniques with two GNSS satellites over time[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation. Porfland: Oregon lonvention Center, 2010: 207-216.
    [9] ALSHAMAA D, MOURAD-CHEHADE F, HONEINE P. Tracking of mobile sensors using belief functions in indoor wireless networks[J]. IEEE Sensors Journal, 2018, 18(1): 310-319. doi: 10.1109/JSEN.2017.2766630
    [10] RABINOWITZ M, SPILKER J J. A new positioning system using television synchronization signals[J]. IEEE Transactions on Broadcasting, 2005, 51(1): 51-61. doi: 10.1109/TBC.2004.837876
    [11] BORENOVIC M, NESKOVIC A, NESKOVIC N. Vehicle positioning using GSM and cascade-connected ANN structures[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 34-46. doi: 10.1109/TITS.2012.2207116
    [12] WEBB T A, GROVES P D, CROSS P A, et al. A new differential positioning method using modulation correlation of signals of opportunity[C]// IEEE/ION Position, Location and Navigation Symposium. Piscataway: IEEE Press, 2010: 972-981.
    [13] 黄高明, 景桐, 田威. 机会信号导航综述[J]. 控制与决策, 2019, 34(6): 1121-1131.

    HUANG G M, JING T, TIAN W. Survey on navigation via signal of opportunity[J]. Control and Decision, 2019, 34(6): 1121-1131 (in Chinese).
    [14] MORALES J J, KHALIFE J J, KASSAS Z M. Information fusion strategies for collaborative inertial radio SLAM[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12935-12952. doi: 10.1109/TITS.2021.3118678
    [15] 孙国良, 沈士团, 丁子明, 等. 一种无源双星与多普勒导航系统组合的实现方法[J]. 航空学报, 2006, 27(4): 682-686.

    SUN G L, SHEN S T, DING Z M, et al. An integration method for passive RDSS and DNS[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 682-686 (in Chinese).
    [16] YE L Y, YANG Y K, JING X L, et al. Single-satellite integrated navigation algorithm based on broadband LEO constellation communication links[J]. Remote Sensing, 2021, 13(4): 703. doi: 10.3390/rs13040703
    [17] KATARZYNA S, WIELGOSZ P, PAZIEWSKI J. Accuracy analysis of the Klobuchar ionosphere model transmitted by the GPS system[C]//Proceedings of the 9th International Conference on Environmental Engineering. Vilnius: J Paziewski, 2014: 246-252.
    [18] Leandro, Rodrigo , M. Santos , and R. B. Langley . UNB neutral atmosphere models: Development and performance[C]//Proceedings of the National Technical Meeting of the Institute of Navigation Ntm. Florida: IOW, 2006: 215-226.
    [19] Hargrave P J. A tutorial introduction to Kalman filtering[C]//IEE Colloquium on Kalman Filters: Introduction, Applications and Future Developments. Pissataway: IEEE Press, 1989: 1-6.
    [20] Li X R , Jilkov V P . Survey of maneuvering target tracking: decision-based methods[C]//International Symposium on Optical Science & Technology. International Society for Optics and Photonics. Paris: SPIE, 2000: 368-383.
    [21] FAWCETT J A. Effect of course maneuvers on bearings-only range estimation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(8): 1193-1199. doi: 10.1109/29.1648
    [22] LE CADRE J E, JAUFFRET C. Discrete-time observability and estimability analysis for bearings-only target motion analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 178-201. doi: 10.1109/7.570737
    [23] 滕云龙, 师奕兵, 郑植. 恶劣环境下GPS接收机定位算法研究[J]. 仪器仪表学报, 2011, 32(8): 1879-1884.

    TENG Y L, SHI Y B, ZHENG Z. Research on GPS receiver positioning algorithm under bad conditions[J]. Chinese Journal of Scientific Instrument, 2011, 32(8): 1879-1884 (in Chinese).
    [24] 李博, 徐超, 李孝辉, 等. 遮挡环境下原子钟和气压测高仪辅助北斗定位方法研究[J]. 电子与信息学报, 2018, 40(9): 2212-2218.

    LI B, XU X, LI X H, et al. BeiDou navigation satellite system in challenge environment using an atomic clock and barometric altimeter[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2212-2218.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  838
  • HTML全文浏览量:  119
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 录用日期:  2022-09-16
  • 网络出版日期:  2022-11-19
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答