留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

区间划分改进相似性的发动机剩余寿命预测

赵洪利 白令德

赵洪利,白令德. 区间划分改进相似性的发动机剩余寿命预测[J]. 北京航空航天大学学报,2024,50(10):3005-3012 doi: 10.13700/j.bh.1001-5965.2022.0762
引用本文: 赵洪利,白令德. 区间划分改进相似性的发动机剩余寿命预测[J]. 北京航空航天大学学报,2024,50(10):3005-3012 doi: 10.13700/j.bh.1001-5965.2022.0762
ZHAO H L,BAI L D. Remaining life prediction of engine by improved similarity with interval partition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3005-3012 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0762
Citation: ZHAO H L,BAI L D. Remaining life prediction of engine by improved similarity with interval partition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3005-3012 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0762

区间划分改进相似性的发动机剩余寿命预测

doi: 10.13700/j.bh.1001-5965.2022.0762
基金项目: 中央高校基本科研业务费专项资金(3122021049);中国民航大学实验技术创新基金(2021CXJJ90)
详细信息
    通讯作者:

    E-mail:henleytrent@163.com

  • 中图分类号: V233

Remaining life prediction of engine by improved similarity with interval partition

Funds: The Fundamental Research Funds for the Central Universities (3122021049); Civil Aviation University of China Experimental Technology Innovation Fund (2021CXJJ90)
More Information
  • 摘要:

    针对传统相似性匹配方法易引入伪相似发动机导致预测精度不高的问题,提出一种结合发动机性能退化特点与相似性匹配特点的区间划分改进相似性剩余寿命(RUL)预测方法。利用堆栈自编码器基于选择的参数构建健康指数;根据测试发动机的已知运行循环进行区间划分,利用传统相似性匹配方法进行初步筛选;对于不同区间下的测试发动机,分别使用不确定性修正和退化一致性检验去除初选参考发动机中的异常发动机,得到最终的剩余寿命预测结果。利用NASA的C-MAPSS数据集进行验证,结果表明:所提方法的预测精度比当前相似性匹配方法提升了34%,证明了方法的有效性。

     

  • 图 1  自编码器结构

    Figure 1.  Autoencoder structure

    图 2  堆栈自编码器结构

    Figure 2.  Stacked autoencoder structure

    图 3  区间划分改进相似性方法流程

    Figure 3.  Flow of improved similarity method with interval partition

    图 4  传统相似性匹配过程

    Figure 4.  Traditional similarity matching process

    图 5  退化一致性检验过程

    Figure 5.  Degradation consistency test process

    图 6  不同误差值的评价指标比较

    Figure 6.  Evaluation metrics comparison of different errors

    图 7  某台发动机健康指数

    Figure 7.  Health index of an engine

    图 8  不同异常值阈值的均方根误差比较

    Figure 8.  RMSE comparison of different abnormal thresholds

    表  1  堆栈自编码器网络参数

    Table  1.   Stacked autoencoder network parameters

    层数节点数激活函数
    14Sigmoid
    22Sigmoid
    31Sigmoid
    下载: 导出CSV

    表  2  区间划分改进相似性参数

    Table  2.   Improved similarity parameters with interval partition

    参数 数值
    时间窗口长度$ W $ 60
    距离放缩因子$ \lambda $ 0.002
    相似滤波系数$ \gamma $ 0.9
    多模型个数$ N $ 20
    时间窗口平移系数$ \beta $ 1
    伪相似度百分比$ \theta $ 80
    下载: 导出CSV

    表  3  第89台测试发动机及对应的伪相似度

    Table  3.   The 89th test engine and its pseudo-similarity

    第89台测试发动机
    RUL真实值
    初选参考
    发动机序号
    初选参考发动机
    RUL预测值
    传统相似性匹配方法 退化一致性检验
    相似度 相似度阈值 RUL预测值 误差 伪相似度 伪相似度阈值 RUL预测值 误差
    28 20 27 0.985 0.906 42 14 1.018 1.234 32 4
    54 20 0.988 1.100
    59 26 0.997 1.217
    80 62 0.991 1.389
    91 62 0.992 1.388
    52 26 0.992 1.202
    49 29 0.987 1.485
    95 61 0.994 1.476
    $ \vdots $ $\vdots $ $\vdots $ $\vdots $
    下载: 导出CSV

    表  4  不同预测方法的预测精度对比

    Table  4.   Comparison of prediction accuracy of different prediction methods

    方法 均方根误差 评分函数
    MLP[22] 25.23 1205
    SVR[23] 20.96 1381
    DLSTM[24] 18.33 655
    SMD[11] 682
    本文方法 16.26 450
    下载: 导出CSV
  • [1] 中国民用航空局. 中国民用航空发展第十三个五年规划[EB/OL]. (2017-02-16)[2022-08-18]. http://www.gov.cn/xinwen/2017-02/16/content_5168506.htm.

    Civil Aviation Administration of China. The Thirteenth Five-Year Plan for the development of China’s civil aviation[EB/OL]. (2017-02-16)[2022-08-18]. http://www.gov.cn/xinwen/201702/16/content_5168506.htm(in Chinese).
    [2] 尉询楷, 杨立, 刘芳, 等. 航空发动机预测与健康管理[M]. 北京: 国防工业出版社, 2014: 132-133.

    WEI X K, YANG L, LIU F, et al. Aero-engine prediction and health management[M]. Beijing: National Defense Industry Press, 2014: 132-133(in Chinese).
    [3] ELSHEIKH A, YACOUT S, OUALI M S. Bidirectional handshaking LSTM for remaining useful life prediction[J]. Neurocomputing, 2019, 323: 148-156. doi: 10.1016/j.neucom.2018.09.076
    [4] 周俊. 数据驱动的航空发动机剩余使用寿命预测方法研究[D]. 南京: 南京航空航天大学, 2017.

    ZHOU J. Research on data-driven prediction methods for remaining useful life of aero-engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
    [5] PECHT M. Prognostics and health management of electronics[M]. New York: Wiley, 2008.
    [6] CHEN X, JIN G, QIU S Q, et al. Direct remaining useful life estimation based on random forest regression[C]//Proceedings of the Global Reliability and Prognostics and Health Management. Piscataway: IEEE Press, 2020: 1-7.
    [7] 车畅畅, 王华伟, 倪晓梅, 等. 基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测[J]. 机械工程学报, 2021, 57(14): 304-312.

    CHE C C, WANG H W, NI X M, et al. Residual life prediction of aeroengine based on 1D-CNN and Bi-LSTM[J]. Journal of Mechanical Engineering, 2021, 57(14): 304-312(in Chinese).
    [8] 郭庆, 李印龙, 郑天翔. 基于非线性 Wiener 过程航空发动机性能退化预测[J]. 推进技术, 2021, 42(9): 1956-1963.

    GUO Q, LI Y L, ZHENG T X. Performance degradation prediction of aero-engine based on nonlinear Wiener process[J]. Journal of Propulsion Technology, 2021, 42(9): 1956-1963(in Chinese).
    [9] ZHANG H, ZHANG Q, SHAO S Y, et al. Attention-based LSTM network for rotatory machine remaining useful life prediction[J]. IEEE Access, 2020, 8: 132188-132199. doi: 10.1109/ACCESS.2020.3010066
    [10] WANT T. Trajectory similarity based prediction for remaining useful life estimation [D]. Cincinnati: University of Cincinnati, 2010.
    [11] 张妍, 王村松, 陆宁云, 等. 基于退化特征相似性的航空发动机寿命预测[J]. 系统工程与电子技术, 2019, 41(6): 1414-1421. doi: 10.3969/j.issn.1001506X.2019.06.32

    ZHANG Y, WANG C S, LU N Y, et al. Remaining useful life prediction for aero-engine based on the similarity of degradation characteristics[J]. Systems Engineering and Electronics, 2019, 41(6): 1414-1421(in Chinese). doi: 10.3969/j.issn.1001506X.2019.06.32
    [12] CAI H S, JIA X D, FENG J S, et al. A similarity based methodology for machine prognostics by using kernel two sample test[J]. ISA Transactions, 2020, 103: 112-121. doi: 10.1016/j.isatra.2020.03.007
    [13] YU W N, KIM I Y, MECHEFSKE C. An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme[J]. Reliability Engineering & System Safety, 2020, 199: 106926.
    [14] XUE B, XU F M, HUANG X, et al. Improved similarity based prognostics method for turbine engine degradation with degradation consistency test[J]. Applied Intelligence, 2022, 52(9): 10181-10201. doi: 10.1007/s10489-021-03034-6
    [15] TKACZ E, KOZANECKA D, KOZAN-ECKI Z. Investigations of oil-free support systems to improve the reliability of ORC hermetic high-speed turbomachinery[J]. Mechanics and Mechanical Engineering, 2011, 15(3): 355-365.
    [16] 王昆, 郭迎清, 赵万里, 等. 基于SSAE和相似性匹配的航空发动机剩余寿命预测[J]. 北京航空航天大学学报, 2023, 49(10): 2817-2825.

    WANG K, GUO Y Q, ZHAO W L, et al. Remaining useful life prediction of aeroengine based on SSAE and similarity matching[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(10): 2817-2825(in Chinese).
    [17] 李浩, 王卓健, 李哲, 等. 基于堆栈自编码器和DeepAR的航空发动机剩余寿命预测[J]. 推进技术, 2022, 43(11): 72-80.

    LI H, WANG Z J, LI Z, et al. Prediction of remaining useful life of aero-engine based on stacked autoencoder and DeepAR[J]. Journal of Propulsion Technology, 2022, 43(11): 72-80(in Chinese).
    [18] KHELIF R, MALINOWSKI S, CHEBEL-MORELLO B, et al. RUL prediction based on a new similarity-instance based approach[C]//Proceedings of the IEEE 23rd International Symposium on Industrial Electronics. Piscataway: IEEE Press, 2014: 2463-2468.
    [19] RAMASSO E. Investigating computational geometry for failure prognostics in presence of imprecise health indicator: results and comparisons on C-MAPSS datasets[C]//Proceedings of the 2nd European Conference of the Prognostics and Health Management Society. Piscataway: IEEE Press, 2014: 1-13.
    [20] MALHOTRA P, TV V, RAMAKRISHNAN A, et al. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder[EB/OL]. (2016-08-22)[2022-08-18]. http://arxiv.org/abs/1608.06154.
    [21] SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proceedings of the International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 1-9.
    [22] 李杰, 贾渊杰, 张志新, 等. 基于融合神经网络的航空发动机剩余寿命预测[J]. 推进技术, 2021, 42(8): 1725-1734.

    LI J, JIA Y J, ZHANG Z X, et al. Remaining useful life prediction of aeroengine based on fusion neural network[J]. Journal of Propulsion Technology, 2021, 42(8): 1725-1734(in Chinese).
    [23] SUN W J, ZHAO R, YAN R Q, et al. Convolutional discriminative feature learning for induction motor fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1350-1359. doi: 10.1109/TII.2017.2672988
    [24] WU J, HU K, CHENG Y W, et al. Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network[J]. ISA Transactions, 2020, 97: 241-250. doi: 10.1016/j.isatra.2019.07.004
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  111
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-15
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答