留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用温度梯度的干燥反应器H2O穿透深度评估方法

张勇平 卞强 杨润泽 张震 白攀峰

张勇平,卞强,杨润泽,等. 采用温度梯度的干燥反应器H2O穿透深度评估方法[J]. 北京航空航天大学学报,2024,50(10):3123-3130 doi: 10.13700/j.bh.1001-5965.2022.0764
引用本文: 张勇平,卞强,杨润泽,等. 采用温度梯度的干燥反应器H2O穿透深度评估方法[J]. 北京航空航天大学学报,2024,50(10):3123-3130 doi: 10.13700/j.bh.1001-5965.2022.0764
ZHANG Y P,BIAN Q,YANG R Z,et al. Evaluation method of H2O penetration depth of drying reactor based on temperature gradient[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3123-3130 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0764
Citation: ZHANG Y P,BIAN Q,YANG R Z,et al. Evaluation method of H2O penetration depth of drying reactor based on temperature gradient[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3123-3130 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0764

采用温度梯度的干燥反应器H2O穿透深度评估方法

doi: 10.13700/j.bh.1001-5965.2022.0764
详细信息
    通讯作者:

    E-mail:13810213687@139.com

  • 中图分类号: V11;TQ051.1

Evaluation method of H2O penetration depth of drying reactor based on temperature gradient

More Information
  • 摘要:

    针对空间站CO2去除系统中干燥反应器对H2O穿透深度缺乏直接评估手段的问题,提出利用干燥反应器内部温度传感器的温度梯度特性来间接评估的方法;根据硅胶材料吸附H2O放热、脱附H2O吸热的物理特性,结合温度传感器在干燥反应器中的深度位置,分析了不同边界条件下温度传感器数据曲线在吸附及解吸周期内的变化特性,提出反映干燥反应器H2O穿透深度的指标集和评估方法;并对所提方法在系统的密闭舱试验中进行了验证,验证结果表明了指标集的合理性和所提方法的有效性。

     

  • 图 1  CO2去除系统组成及运行流程

    Figure 1.  Composition and operation flow of CO2 removal system

    图 2  干燥反应器测温杆布局及内部区域划分示意图

    Figure 2.  Scheme diagram of temperature measuring rod layout and internal area division of drying reactor

    图 3  系统进气温度曲线

    Figure 3.  System intake temperature curve

    图 4  干燥反应器A长、中、短测温杆温度曲线

    Figure 4.  Temperature curves of long, medium, and short temperature measuring rods of drying reactor A

    图 5  吸附周期干燥反应器A穿透深度评估曲线

    Figure 5.  Evaluation curves of penetration depth for drying reactor A in adsorption cycle

    图 6  干燥反应器A内部长、中、短测温杆温度曲线(2018年4月6日局部时间段)

    Figure 6.  Temperature curves of long, medium, and short temperature measuring rods in drying reactor A(local time period on April 6, 2018)

    图 7  解吸周期干燥反应器穿透深度评估曲线(测温杆最高温度)

    Figure 7.  Evaluation curves of penetration depth for drying reactor in desorption cycle (maximum temperature of temperature measuring rod)

    表  1  干燥周期H2O穿透深度定义(Ⅲ、Ⅳ)

    Table  1.   Definition of H2O penetration depth in drying cycle (Ⅲ and Ⅳ)

    穿透深度区域A区域B区域C区域D
    III穿透穿透到达,未穿透未到达
    IV穿透穿透穿透到达,是否穿透未知
    下载: 导出CSV

    表  2  吸附周期H2O穿透深度判据

    Table  2.   H2O penetration depth criteria in adsorption cycle

    穿透深度 判据 备注
    $ {\nabla T}_{1} $<0,$ {\nabla T}_{2} $≥0 H2O进入但未穿透区域B
    Ⅲ(或以上) $ {\nabla T}_{1} $<0,$ {\nabla T}_{2} $$ < $0 H2O进入区域C
    $ {\nabla T}_{1} $<0,$ {\nabla T}_{2} $$ < $0, $ {\nabla T}_{3} $=0 H2O进入但未穿透区域C
    Ⅳ(或级以上) $ {\nabla T}_{1} $<0,$ {\nabla T}_{2} $$ < $0, $ {\nabla T}_{3} $$ < $0 H2O穿透区域C进入区域D
    下载: 导出CSV

    表  3  解吸周期H2O穿透深度判据

    Table  3.   H2O penetration depth criteria in desorption cycle

    穿透深度 判据 备注
    $ {T_{{\text{L}}\max }} $波动,$ {T_{{\text{M}}\max }} $和$ {T_{{\text{S}}\max }} $不变 $ {T_{{\text{L}}\max }} $>$ {T_{{\text{LZ}}\max }} $,穿透深度变浅
    $ {T_{{\text{L}}\max }} $<$ {T_{{\text{LZ}}\max }} $,穿透深度变深
    $ {T_{{\text{L}}\max }} $波动,$ {T_{{\text{M}}\max }} $波动,$ {T_{{\text{S}}\max }} $不变 $ {T_{{\text{M}}\max }} $>$ {T_{{\text{MZ}}\max }} $,穿透深度变浅;$ {T_{{\text{M}}\max }} $<$ {T_{{\text{MZ}}\max }} $,穿透深度变深
    Ⅳ(或以上) $ {T_{{\text{L}}\max }} $波动,$ {T_{{\text{M}}\max }} $波动,$ {T_{{\text{S}}\max }} $波动 $ {T_{{\text{S}}\max }} $>$ {T_{{\text{SZ}}\max }} $,穿透深度变浅;$ {T_{{\text{S}}\max }} $<$ {T_{{\text{SZ}}\max }} $,穿透深度变深
    下载: 导出CSV

    表  4  吸附及解吸周期H2O进入及穿透深度评估方法汇总

    Table  4.   Summary of evaluation methods for H2O entry and penetration depth in adsorption and desorption cycles

    模式 进入 穿透
    A B C D A B C D
    吸附 × ×
    解吸 ×
    下载: 导出CSV
  • [1] HUANG Y H, WANG J L, JIANG H Q, et al. Research of polymerization reactor fault diagnosis based on acoustic emission[J]. Advanced Materials Research, 2011, 221: 550-554. doi: 10.4028/www.scientific.net/AMR.221.550
    [2] ZHOU J, HUANG F N, SHEN W H, et al. Sub-period division strategies combined with multiway principle component analysis for fault diagnosis on sequence batch reactor of wastewater treatment process in paper mill[J]. Process Safety and Environmental Protection, 2021, 146: 9-19. doi: 10.1016/j.psep.2020.08.032
    [3] LIU H R, BUVAT J C, ESTEL L, et al. Bayesian network method for fault diagnosis in a continuous tubular reactor[J]. Chemical Product and Process Modeling, 2010, 5(1): 1-9.
    [4] SHEIBAT-OTHMAN N, LAOUTI N, VALOUR J P, et al. Support vector machines combined to observers for fault diagnosis in chemical reactors[J]. The Canadian Journal of Chemical Engineering, 2014, 92(4): 685-695. doi: 10.1002/cjce.21881
    [5] 刘敏. 人工神经网络在化学反应器故障诊断中的应用[J]. 聊城师院学报(自然科学版), 2000, 13(1): 51-54.

    LIU M. Fault detection in the chemical reactors using artificial neural networks[J]. Journal of Liaocheng Teachers College (Natural Science Edition), 2000, 13(1): 51-54 (in Chinese).
    [6] LV M B, LI Y H, GUO R. Galerkin-based extended Kalman filter with application to CO2 removal system[J]. Journal of Central South University, 2020, 27(6): 1780-1789. doi: 10.1007/s11771-020-4407-x
    [7] SHI L, WANG L J, WANG Z Z. The modeling and the sensor fault diagnosis of a continuous stirred tank reactor with a takagi-sugeno recurrent fuzzy neural network[J]. International Journal of Distributed Sensor Networks, 2009, 5(1): 37. doi: 10.1080/15501320802524037
    [8] CMARIK G, KNOX J, HUFF T. Analysis of performance degradation of silica gels after extended use onboard the ISS[C]//Proceedings of the 48th International Conference on Environmental Systems. Albuquerque: International Conference on Environmental Systems, 2018: 1-11.
    [9] CMARIK G, KNOX J. Co-adsorption of carbon dioxide on zeolite 13X in the presence of preloaded water[C]//Proceedings of the 48th International Conference on Environmental Systems. Albuquerque: International Conference on Environmental Systems, 2018: 1-10.
    [10] 韩永强, 吴宝治, 杨润泽, 等. 分子筛CO2去除系统研究[J]. 航天医学与医学工程, 2013, 26(3): 181-184.

    HAN Y Q, WU B Z, YANG R Z, et al. Study on carbon dioxide removal assembly using molecular sieve technology[J]. Space Medicine & Medical Engineering, 2013, 26(3): 181-184 (in Chinese).
    [11] 管国锋, 赵汝溥. 化工原理[M]. 4版. 北京: 化学工业出版社, 2015.

    GUAN G F, ZHAO R P. Principles of chemical engineering[M]. 4th ed. Beijing: Chemical Industry Press, 2015 (in Chinese).
    [12] SOLMUŞ İ, ANDREW S REES D, YAMALI C, et al. A two-energy equation model for dynamic heat and mass transfer in an adsorbent bed using silica gel/water pair[J]. International Journal of Heat and Mass Transfer, 2012, 55(19-20): 5275-5288. doi: 10.1016/j.ijheatmasstransfer.2012.05.036
    [13] ISLAM M A, PAL A, SAHA B B. Experimental study on thermophysical and porous properties of silica gels[J]. International Journal of Refrigeration, 2020, 110: 277-285. doi: 10.1016/j.ijrefrig.2019.10.027
    [14] YAMAMOTO E, KATSURAYAMA K, WATANABE F, et al. Heat and mass transfer characteristics in adsorption of water vapor for silica gel packed bed adsorber[J]. Journal of Chemical Engineering of Japan, 2000, 33(1): 12-18. doi: 10.1252/jcej.33.12
    [15] SUN J, BESANT R W. Heat and mass transfer during silica gel-moisture interactions[J]. International Journal of Heat and Mass Transfer, 2005, 48(23-24): 4953-4962. doi: 10.1016/j.ijheatmasstransfer.2005.02.043
    [16] ULRICH L, RICARDO C S J, RICHARD B, et al. Fundamental thermodynamic properties of sorbents for atmospheric water capture[J]. Chemical Engineering Journal, 2022, 431: 134058. doi: 10.1016/j.cej.2021.134058
    [17] BERNAL V, GIRALDO L, MORENO-PIRAJÁN J C. Understanding the solid-liquid equilibria between paracetamol and activated carbon: Thermodynamic approach of the interactions adsorbent-adsorbate using equilibrium, kinetic and calorimetry data[J]. Journal of Hazardous Materials, 2021, 419: 126432. doi: 10.1016/j.jhazmat.2021.126432
    [18] 邓述波, 余刚. 环境吸附材料及应用原理[M]. 北京: 科学出版社, 2012.

    DENG S B, YU G. Environmental adsorption materials and their application principles[M]. Beijing: Science Press, 2012 (in Chinese).
    [19] 周立幸, 陈淑霞, 郑禄彬. 水/硅胶吸附体系的热化学研究[J]. 物理化学学报, 1985, 1(6): 566-570. doi: 10.3866/PKU.WHXB19850610

    ZHOU L X, CHEN S X, ZHENG L B. Thermochemical study for water/silica adsorption system[J]. Acta Physico-Chimica Sinica, 1985, 1(6): 566-570 (in Chinese). doi: 10.3866/PKU.WHXB19850610
    [20] 王德昌, 韩艳培, 张光, 等. 吸附制冷中硅胶吸附性能衰减特性研究[J]. 工程热物理学报, 2012, 33(2): 207-209.

    WANG D C, HAN Y P, ZHANG G, et al. Investigation of adsorption performance deterioration of silica gel in water adsorption refrigeration[J]. Journal of Engineering Thermophysics, 2012, 33(2): 207-209 (in Chinese).
    [21] 叶卫平. Origin9.1科技绘图及数据分析[M]. 北京: 机械工业出版社, 2019.

    YE W P. Origin9.1 Technology drawing and data analysis[M]. Beijing: China Machine Press, 2019 (in Chinese).
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  94
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 录用日期:  2023-03-06
  • 网络出版日期:  2023-05-10
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答